The Riemann–Hilbert Problem in Weighted Classes of Cauchy Type Integrals with Density from LP( · )(Γ)

被引:0
|
作者
Vakhtang Kokilashvili
Vakhtang Paatashvili
机构
[1] A. Razmadze Math. Inst,
来源
Complex Analysis and Operator Theory | 2008年 / 2卷
关键词
Cauchy type integrals; the Riemann–Hilbert problem; weighted Lebesgue space with a variable exponent; Log–Hölder condition; piecewise-Lyapunov boundary; Primary 47B38, 30E20, 30E25; Secondary 42B20, 45P05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Riemann–Hilbert problem in the following setting: find a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi} \in K^{p(\centerdot)}(D;\omega)$$\end{document} whose boundary values ϕ+(t) satisfy the condition\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Re}[(a(t) + ib(t))\phi^{+}(t)] = c(t)$$\end{document} a.e. on Γ. Here D is a simply connected domain bounded by a simple closed curve Γ, and Kp( · )(D;ω) is the set of functions ϕ(z) representable in the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi(z) = \omega^{-1} (z) (K_{\Gamma\varphi})(z)$$\end{document}, where ω(z) is a weight function and (KΓφ)(z) is a Cauchy type integral whose density φ is integrable with a variable exponent p(t). It is assumed that Γ is a piecewise-Lyapunov curve without zero angles, ω(z) is an arbitrary power function and p(t) satisfies the Log-Hölder condition. The solvability conditions are established and solutions are constructed. These solutions largely depend on the coefficients a, b, c, the weight ω, on the values of p(t) at the angular points of Γ and on the values of angles at these points.
引用
收藏
页码:569 / 591
页数:22
相关论文
共 50 条
  • [31] The Riemann boundary value problem in the class of Cauchy type integrals with densities of grand variable exponent Lebesgue spaces
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Paatashvili, Vakhtang
    GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (04) : 551 - 558
  • [32] On an Analogue of the Riemann-Hilbert Problem for a Non-linear Perturbation of the Cauchy-Riemann Operator
    Cherepanova, Yulia L.
    Shlapunov, Alexander A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2016, 9 (04): : 427 - 431
  • [33] Solvability of some classes of singular integral equations of convolution type via Riemann-Hilbert problem
    Li, Pingrun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [34] Hilbert Type Problem for a Cauchy-Riemann Equation with Singularities on a Circle and at a Point in the Lower-Order Coefficients
    Fedorov, Yu S.
    Rasulov, A. B.
    DIFFERENTIAL EQUATIONS, 2021, 57 (01) : 127 - 131
  • [35] Problem of the Riemann—Hilbert Type for a Hyperbolic System on the Plane
    N. A. Zhura
    A. P. Soldatov
    Differential Equations, 2019, 55 : 815 - 823
  • [36] Computing some classes of Cauchy type singular integrals with Mathematica software
    Conceicao, Ana C.
    Kravchenko, Viktor G.
    Pereira, Jose C.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 39 (02) : 273 - 288
  • [37] Deriving weighted Newton-type inequalities for diverse function classes through Riemann-Liouville fractional integrals
    Almoneef, Areej A.
    Hyder, Abd-Allah
    Budak, Huseyin
    CHAOS SOLITONS & FRACTALS, 2024, 186
  • [38] Computing some classes of Cauchy type singular integrals with Mathematica software
    Ana C. Conceição
    Viktor G. Kravchenko
    José C. Pereira
    Advances in Computational Mathematics, 2013, 39 : 273 - 288
  • [39] On Riemann-Type Weighted Fractional Operators and Solutions to Cauchy Problems
    Samraiz, Muhammad
    Umer, Muhammad
    Abdeljawad, Thabet
    Naheed, Saima
    Rahman, Gauhar
    Shah, Kamal
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 136 (01): : 901 - 919
  • [40] The Cauchy problem for a generalized Riemann-type hydrodynamical equation
    Wei, Long
    Wang, Yang
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (04)