The Riemann–Hilbert Problem in Weighted Classes of Cauchy Type Integrals with Density from LP( · )(Γ)

被引:0
|
作者
Vakhtang Kokilashvili
Vakhtang Paatashvili
机构
[1] A. Razmadze Math. Inst,
来源
Complex Analysis and Operator Theory | 2008年 / 2卷
关键词
Cauchy type integrals; the Riemann–Hilbert problem; weighted Lebesgue space with a variable exponent; Log–Hölder condition; piecewise-Lyapunov boundary; Primary 47B38, 30E20, 30E25; Secondary 42B20, 45P05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Riemann–Hilbert problem in the following setting: find a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi} \in K^{p(\centerdot)}(D;\omega)$$\end{document} whose boundary values ϕ+(t) satisfy the condition\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Re}[(a(t) + ib(t))\phi^{+}(t)] = c(t)$$\end{document} a.e. on Γ. Here D is a simply connected domain bounded by a simple closed curve Γ, and Kp( · )(D;ω) is the set of functions ϕ(z) representable in the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi(z) = \omega^{-1} (z) (K_{\Gamma\varphi})(z)$$\end{document}, where ω(z) is a weight function and (KΓφ)(z) is a Cauchy type integral whose density φ is integrable with a variable exponent p(t). It is assumed that Γ is a piecewise-Lyapunov curve without zero angles, ω(z) is an arbitrary power function and p(t) satisfies the Log-Hölder condition. The solvability conditions are established and solutions are constructed. These solutions largely depend on the coefficients a, b, c, the weight ω, on the values of p(t) at the angular points of Γ and on the values of angles at these points.
引用
收藏
页码:569 / 591
页数:22
相关论文
共 50 条
  • [21] Hilbert Problem for the Cauchy–Riemann Equation with a Singular Circle and a Singular Point
    Rasulov A.B.
    Bobodzhanova M.A.
    Fedorov Y.S.
    Journal of Mathematical Sciences, 2019, 241 (3) : 327 - 339
  • [22] A Hilbert Boundary Value Problem for Generalised Cauchy-Riemann Equations
    Alsaedy, Ammar
    Tarkhanov, Nikolai
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 931 - 953
  • [23] RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS AND DERIVATIVES ON MORREY SPACES AND APPLICATIONS TO A CAUCHY-TYPE PROBLEM∗
    Wu, Jinxia
    Wu, Qingyan
    Yang, Yinuo
    Dang, Pei
    Ren, Guangzhen
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 1078 - 1096
  • [24] Hilbert Type Problem for a Cauchy–Riemann Equation with Singularities on a Circle and at a Point in the Lower-Order Coefficients
    Yu. S. Fedorov
    A. B. Rasulov
    Differential Equations, 2021, 57 : 127 - 131
  • [25] Solvability of some classes of singular integral equations of convolution type via Riemann–Hilbert problem
    Pingrun Li
    Journal of Inequalities and Applications, 2019
  • [26] Riemann–Hilbert problem in a family of weighted Hölder spaces
    E. S. Meshcheryakova
    A. P. Soldatov
    Differential Equations, 2016, 52 : 495 - 504
  • [27] Riemann-Hilbert problem in a family of weighted Holder spaces
    Meshcheryakova, E. S.
    Soldatov, A. P.
    DIFFERENTIAL EQUATIONS, 2016, 52 (04) : 495 - 504
  • [28] Weighted Milne-type inequalities through Riemann-Liouville fractional integrals and diverse function classes
    Almoneef, Areej A.
    Hyder, Abd-Allah
    Budak, Huseyin
    AIMS MATHEMATICS, 2024, 9 (07): : 18417 - 18439
  • [29] BOUNDARY PROPERTIES OF CAUCHY-TYPE INTEGRALS - THE LP-CASE
    ALEKSANDROV, AV
    SOLDATOV, AP
    DIFFERENTIAL EQUATIONS, 1991, 27 (01) : 1 - 5
  • [30] THE GENERAL SOLUTION OF THE HOMOGENEOUS RIEMANN PROBLEM IN THE WEIGHTED SMIRNOV CLASSES
    Sadigova, Sabina R.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2014, 40 (02): : 115 - 124