Dynamic feature weighting for multi-label classification problems

被引:0
|
作者
Maryam Dialameh
Ali Hamzeh
机构
[1] Shiraz University,Department of Computer Science, School of Electrical and Computer Engineering
来源
Progress in Artificial Intelligence | 2021年 / 10卷
关键词
Multi-label classification; Feature weighting; Dynamic weights;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a dynamic feature weighting approach for multi-label classification problems. The choice of dynamic weights plays a vital role in such problems because the assigned weight to each feature might be dependent on the query. To take this dependency into account, we optimize our previously proposed dynamic weighting function through a non-convex formulation, resulting in several interesting properties. Moreover, by minimizing the proposed objective function, the samples with similar label sets get closer to each other while getting far away from the dissimilar ones. In order to learn the parameters of the weighting functions, we propose an iterative gradient descent algorithm that minimizes the traditional leave-one-out error rate. We further embed the learned weighting function into one of the popular multi-label classifiers, namely ML-kNN, and evaluate its performance over a set of benchmark datasets. Moreover, a distributed implementation of the proposed method on Spark is suggested to address the computational complexity on large-scale datasets. Finally, we compare the obtained results with several related state-of-the-art methods. The experimental results illustrate that the proposed method consistently achieves superior performances compared to others.
引用
收藏
页码:283 / 295
页数:12
相关论文
共 50 条
  • [31] Multi-label Classification with Feature-aware Cost-sensitive Label Embedding
    Chiu, Hsien-Chun
    Lin, Hsuan-Tien
    2018 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2018, : 40 - 45
  • [32] Structuring the Output Space in Multi-label Classification by Using Feature Ranking
    Nikoloski, Stevanche
    Kocev, Dragi
    Dzeroski, Saso
    NEW FRONTIERS IN MINING COMPLEX PATTERNS, NFMCP 2017, 2018, 10785 : 151 - 166
  • [33] Multi-label Dysfluency Classification
    Jouaiti, Melanie
    Dautenhahn, Kerstin
    SPEECH AND COMPUTER, SPECOM 2022, 2022, 13721 : 290 - 301
  • [34] Multi-label Deepfake Classification
    Singh, Inder Pal
    Mejri, Nesryne
    Nguyen, Van Dat
    Ghorbel, Enjie
    Aouada, Djamila
    2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,
  • [35] Low-rank learning for feature selection in multi-label classification
    Lim, Hyunki
    PATTERN RECOGNITION LETTERS, 2023, 172 : 106 - 112
  • [36] TOPSIS-ACO based feature selection for multi-label classification
    Verma G.
    Sahu T.P.
    International Journal of Computers and Applications, 2024, 46 (06) : 363 - 380
  • [37] Updating Correlation-Enhanced Feature Learning for Multi-Label Classification
    Zhou, Zhengjuan
    Zheng, Xianju
    Yu, Yue
    Dong, Xin
    Li, Shaolong
    MATHEMATICS, 2024, 12 (13)
  • [38] Feature selection for multi-label classification based on neighborhood rough sets
    Duan, Jie
    Hu, Qinghua
    Zhang, Lingjun
    Qian, Yuhua
    Li, Deyu
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2015, 52 (01): : 56 - 65
  • [39] Multi-label Emotion Classification for Microblog Based on CNN Feature Space
    Sun S.
    He Y.
    1600, Sichuan University (49): : 162 - 169
  • [40] Partial Classifier Chains with Feature Selection by Exploiting Label Correlation in Multi-Label Classification
    Wang, Zhenwu
    Wang, Tielin
    Wan, Benting
    Han, Mengjie
    ENTROPY, 2020, 22 (10) : 1 - 22