Stabilization of an Euler-Bernoulli Beam with Distributed Damping Under Time Delays in the Boundary

被引:0
作者
Yanfang Li
Hao Chen
Yaru Xie
机构
[1] Henan Normal University,Department of Mathematics
[2] Beijing Institute of Technology,School of Mechatronical Engineering
[3] Civil Aviation University of China,Department of Mathematics
来源
Acta Applicandae Mathematicae | 2022年 / 177卷
关键词
Euler-Bernoulli beam equation; Interior damping; Boundary delay; Exponential stability region; Lyapunov function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the exponential stability of an Euler-Bernoulli beam system with distributed damping subjected to a time-delay in the boundary. At first, applying the semigroup theory of bounded linear operators we prove the well posedness of the system. And then we give the exponential stability analysis of the system by constructing an appropriate Lyapunov function. Different from the earlier results, we use the damping coefficient α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha $\end{document} and delay coefficient β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta $\end{document} together with the parameters of the system to give a description of the stability region. The simulation are presented to prove the effectiveness of this results.
引用
收藏
相关论文
共 50 条
  • [31] Existence and Exponential Stability for a Euler-Bernoulli Beam Equation with Memory and Boundary Output Feedback Control Term
    Jong Yeoul Park
    Yong Han Kang
    Jung Ae Kim
    Acta Applicandae Mathematicae, 2008, 104 : 287 - 301
  • [32] Existence and Exponential Stability for a Euler-Bernoulli Beam Equation with Memory and Boundary Output Feedback Control Term
    Park, Jong Yeoul
    Kang, Yong Han
    Kim, Jung Ae
    ACTA APPLICANDAE MATHEMATICAE, 2008, 104 (03) : 287 - 301
  • [33] Existence and uniform decay for Euler-Bernoulli beam equation with memory term
    Park, JY
    Kim, JA
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (14) : 1629 - 1640
  • [34] A dynamic Euler-Bernoulli beam equation frictionally damped on an elastic foundation
    Heibig, Arnaud
    Petrov, Adrien
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 64
  • [35] Well-posedness and stability for a nonlinear Euler-Bernoulli beam equation
    Deng, Panyu
    Zheng, Jun
    Zhu, Guchuan
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (01): : 193 - 216
  • [36] SPECTRAL ANALYSIS AND STABILIZATION OF A CHAIN OF SERIALLY CONNECTED EULER-BERNOULLI BEAMS AND STRINGS
    Ammari, Kais
    Mercier, Denis
    Regnier, Virginie
    Valein, Julie
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) : 785 - 807
  • [37] Adaptive Distributed Boundary Vibration Control of Multiagent Euler-Bernoulli Beams via Cooperative Disturbance Observer Network
    Zhao, Zhibo
    Yuan, Yuan
    Xiao, Yu
    Luo, Biao
    Xu, Xiaodong
    Gui, Weihua
    Yang, Chunhua
    Huang, Tingwen
    IEEE SYSTEMS JOURNAL, 2024, 18 (01): : 568 - 579
  • [38] ADAPTIVE ERROR FEEDBACK REGULATION PROBLEM FOR AN EULER-BERNOULLI BEAM EQUATION WITH GENERAL UNMATCHED BOUNDARY HARMONIC DISTURBANCE
    Guo, Wei
    Zhou, Hua-Cheng
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (03) : 1890 - 1928
  • [39] Uniqueness in the determination of unknown coefficients of an Euler-Bernoulli beam equation with observation in an arbitrary small interval of time
    Kawano, Alexandre
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (01) : 351 - 360
  • [40] OUTPUT REGULATION FOR EULER-BERNOULLI BEAM WITH UNKNOWN EXOSYSTEM USING ADAPTIVE INTERNAL MODEL
    Guo, Bao-Zhu
    Zhao, Ren-Xi
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (04) : 2088 - 2113