N-fold Darboux transformations and exact solutions of the combined Toda lattice and relativistic Toda lattice equation

被引:0
|
作者
Fang-Cheng Fan
Zhi-Guo Xu
Shao-Yun Shi
机构
[1] Minnan Normal University,School of Mathematics and Statistics
[2] Jilin University,School of Mathematics
[3] Jilin University,School of Mathematics and State Key Laboratory of Automotive Simulation and Control
来源
关键词
Integrable lattice equation; -fold Darboux transformation; Exact solutions; 35Q51; 35Q53; 37K40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the N-fold Darboux transformation (DT) of the combined Toda lattice and relativistic Toda lattice equation is constructed in terms of determinants. Comparing with the usual 1-fold DT of equations, this kind of N-fold DT enables us to generate the multi-soliton solutions without complicated recursive process. As applications of the N-fold DT, we derive two kinds of N-fold explicit exact solutions from two different seed solutions and plot the figures with properly parameters to illustrate the propagation of solitary waves. What’s more, we present the relationships between the structures of exact solutions parameters with N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=1$$\end{document}, from which we find the 1-fold solutions may be one soliton solutions or periodic solutions and the waves pass through without change of shapes, amplitudes, wavelengths and directions, etc. The results in this paper might be helpful for interpreting certain physical phenomena.
引用
收藏
相关论文
共 50 条
  • [41] Integrable relativistic Toda type lattice hierarchies, associated coupling systems and the Darboux transformation
    Yang, Hong-Xiang
    Xu, Xi-Xiang
    Sun, Ye-Peng
    Ding, Hai-Yong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (15): : 3933 - 3947
  • [42] Supersymmetric quenching of the Toda lattice equation
    Splittorff, K
    Verbaarschot, JJM
    NUCLEAR PHYSICS B, 2004, 695 (1-2) : 84 - 102
  • [43] A class of solutions of the two-dimensional Toda lattice equation
    Duarte, V. N.
    PHYSICS LETTERS A, 2021, 385
  • [44] Quasi-periodic solutions for modified Toda lattice equation
    Hon, Y. C.
    Fan, E. G.
    CHAOS SOLITONS & FRACTALS, 2009, 40 (03) : 1297 - 1308
  • [45] Replica limit of the Toda lattice equation
    Splittorff, K
    Verbaarschot, JJM
    PHYSICAL REVIEW LETTERS, 2003, 90 (04)
  • [46] ANALOG OF INVERSE SCATTERING THEORY FOR DISCRETE HILLS EQUATION AND EXACT SOLUTIONS FOR PERIODIC TODA LATTICE
    DATE, E
    TANAKA, S
    PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02): : 457 - 465
  • [47] Spectrum and Generation of Solutions of the Toda Lattice
    Barrios Rolania, D.
    Gascon Marquez, J. R.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2009, 2009
  • [48] A discrete-time relativistic Toda lattice
    Suris, Y. B.
    Journal of Physics A: Mathematical and General,
  • [49] A discrete-time relativistic Toda lattice
    Suris, YB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (02): : 451 - 465
  • [50] N-fold Darboux transformation and conservation laws of the modified Volterra lattice
    Yu, Jian-Ping
    Ma, Wen-Xiu
    Sun, Yong-Li
    Khalique, Chaudry Masood
    MODERN PHYSICS LETTERS B, 2018, 32 (33):