N-fold Darboux transformations and exact solutions of the combined Toda lattice and relativistic Toda lattice equation

被引:0
|
作者
Fang-Cheng Fan
Zhi-Guo Xu
Shao-Yun Shi
机构
[1] Minnan Normal University,School of Mathematics and Statistics
[2] Jilin University,School of Mathematics
[3] Jilin University,School of Mathematics and State Key Laboratory of Automotive Simulation and Control
来源
关键词
Integrable lattice equation; -fold Darboux transformation; Exact solutions; 35Q51; 35Q53; 37K40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the N-fold Darboux transformation (DT) of the combined Toda lattice and relativistic Toda lattice equation is constructed in terms of determinants. Comparing with the usual 1-fold DT of equations, this kind of N-fold DT enables us to generate the multi-soliton solutions without complicated recursive process. As applications of the N-fold DT, we derive two kinds of N-fold explicit exact solutions from two different seed solutions and plot the figures with properly parameters to illustrate the propagation of solitary waves. What’s more, we present the relationships between the structures of exact solutions parameters with N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=1$$\end{document}, from which we find the 1-fold solutions may be one soliton solutions or periodic solutions and the waves pass through without change of shapes, amplitudes, wavelengths and directions, etc. The results in this paper might be helpful for interpreting certain physical phenomena.
引用
收藏
相关论文
共 50 条
  • [21] CASORATI DETERMINANT SOLUTION FOR THE RELATIVISTIC TODA LATTICE EQUATION
    OHTA, Y
    KAJIWARA, K
    MATSUKIDAIRA, J
    SATSUMA, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (11) : 5190 - 5204
  • [22] BACKLUND TRANSFORMATION SOLUTIONS OF TODA LATTICE EQUATION
    CHEN, HH
    LIU, CS
    JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (07) : 1428 - 1430
  • [23] SU(N) LIE-ALGEBRA, EXTENDED TODA LATTICE EQUATION AND THE EXACT-SOLUTIONS
    CHOWDHURY, AR
    CHOUDHURY, AG
    MODERN PHYSICS LETTERS A, 1994, 9 (06) : 525 - 534
  • [24] THE INHOMOGENEOUS TODA LATTICE - ITS HIERARCHY AND DARBOUX-BACKLUND TRANSFORMATIONS
    LEVI, D
    RAGNISCO, O
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (08): : 1729 - 1739
  • [25] The solutions of Toda lattice and Volterra lattice
    Xie, FD
    Lü, ZS
    Wang, DK
    CHAOS SOLITONS & FRACTALS, 2006, 27 (01) : 217 - 222
  • [26] EXACT SOLUTIONS FOR A DIRAC-TYPE EQUATION WITH N-FOLD DARBOUX TRANSFORMATION
    Ha, Jinting
    Zhang, Huiqun
    Zhao, Qiulan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (01): : 200 - 210
  • [27] N=2 supersymmetric extensions of relativistic Toda lattice
    Galajinsky, Anton
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, (06):
  • [28] Positive and negative integrable lattice hierarchies: Conservation laws and N-fold Darboux transformations
    Fan, Fangcheng
    Shi, Shaoyun
    Xu, Zhiguo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 91 (91):
  • [29] Trigonal Toda Lattice Equation
    Shigeki Matsutani
    Journal of Nonlinear Mathematical Physics, 2020, 27 : 697 - 704
  • [30] Trigonal Toda Lattice Equation
    Matsutani, Shigeki
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2020, 27 (04) : 697 - 704