Approximation Algorithms for Quadratic Programming

被引:0
|
作者
Minyue Fu
Zhi-Quan Luo
Yinyu Ye
机构
[1] The University of Newcastle,Department of Electrical and Computer Engineering
来源
关键词
quadratic programming; global minimizer; polynomial-time approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of approximating the global minimum of a general quadratic program (QP) with n variables subject to m ellipsoidal constraints. For m=1, we rigorously show that an ∈-minimizer, where error ∈ ∈ (0, 1), can be obtained in polynomial time, meaning that the number of arithmetic operations is a polynomial in n, m, and log(1/∈). For m ≥ 2, we present a polynomial-time (1-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{1}{{m^2 }}$$ \end{document})-approximation algorithm as well as a semidefinite programming relaxation for this problem. In addition, we present approximation algorithms for solving QP under the box constraints and the assignment polytope constraints.
引用
收藏
页码:29 / 50
页数:21
相关论文
共 50 条
  • [31] EXPERIMENTS WITH SUCCESSIVE QUADRATIC PROGRAMMING ALGORITHMS.
    Fan, Y.
    Sarkar, S.
    Lasdon, L.
    Journal of Optimization Theory and Applications, 1988, 56 (03): : 359 - 383
  • [32] Some randomized algorithms for convex quadratic programming
    Goldbach, R
    APPLIED MATHEMATICS AND OPTIMIZATION, 1999, 39 (01): : 121 - 142
  • [33] Properties of two DC algorithms in quadratic programming
    Hoai An Le Thi
    Tao Pham Dinh
    Nguyen Dong Yen
    Journal of Global Optimization, 2011, 49 : 481 - 495
  • [34] Some Randomized Algorithms for Convex Quadratic Programming
    R. Goldbach
    Applied Mathematics and Optimization, 1999, 39 : 121 - 142
  • [35] QUADRATIC PROGRAMMING - ALGORITHMS-ANOMALIES-APPLICATIONS
    COTTLE, RW
    OPERATIONS RESEARCH, 1966, 14 (01) : 182 - &
  • [36] Outer Approximation Method Incorporating a Quadratic Approximation for a DC Programming Problem
    Yamada, S.
    Tanaka, T.
    Tanino, T.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 144 (01) : 156 - 183
  • [37] Outer Approximation Method Incorporating a Quadratic Approximation for a DC Programming Problem
    S. Yamada
    T. Tanaka
    T. Tanino
    Journal of Optimization Theory and Applications, 2010, 144 : 156 - 183
  • [38] An approximation algorithm for indefinite mixed integer quadratic programming
    Del Pia, Alberto
    MATHEMATICAL PROGRAMMING, 2023, 201 (1-2) : 263 - 293
  • [39] An approximation algorithm for indefinite mixed integer quadratic programming
    Alberto Del Pia
    Mathematical Programming, 2023, 201 : 263 - 293
  • [40] Uncertain Quadratic Programming with Recourse and its Approximation Methods
    Hou, Yongchao
    Peng, Weicai
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2015, 18 (03) : 229 - 239