A note on orientation and chromatic number of graphs

被引:0
|
作者
Manouchehr Zaker
机构
[1] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2017年 / 34卷
关键词
Graph coloring; Chromatic number; Acyclic orientation; Degenerate subgraph; 05C15; 05C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be any edge orientation of a graph G. We denote by Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} the maximum value t for which there exists a directed path v1,…,vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_1, \ldots , v_k$$\end{document} such that dout(vk)=t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)=t$$\end{document}, where dout(vk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)$$\end{document} is the out-degree of vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_k$$\end{document} in D. We first obtain some bounds for the chromatic number of G in terms of Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and then show a relationship between Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and vertex partitions of a graph into degenerate subgraphs.
引用
收藏
页码:605 / 611
页数:6
相关论文
共 50 条
  • [41] Distance graphs with maximum chromatic number
    Barajas, Javier
    Serra, Oriol
    DISCRETE MATHEMATICS, 2008, 308 (08) : 1355 - 1365
  • [42] ON THE CHROMATIC NUMBER OF GENERALIZED KNESER GRAPHS
    Jafari, Amir
    Alipour, Sharareh
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (02) : 69 - 76
  • [43] On the chromatic number of random regular graphs
    Coja-Oghlan, Amin
    Efthymiou, Charilaos
    Hetterich, Samuel
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 367 - 439
  • [44] Chromatic number of some families of graphs
    Rani, A. Vimala
    Parvathi, N.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (06): : 1141 - 1149
  • [45] The chromatic number of infinite graphs - A survey
    Peter Komjath
    DISCRETE MATHEMATICS, 2011, 311 (15) : 1448 - 1450
  • [46] Chromatic Number of Resultant of Fuzzy Graphs
    Kishore, Anjaly
    Sunitha, M. S.
    FUZZY INFORMATION AND ENGINEERING, 2016, 8 (02) : 229 - 235
  • [47] Dynamic Chromatic Number of Bipartite Graphs
    Saqaeeyan, Sasan
    Mollaahamdi, Esmaiel
    SCIENTIFIC ANNALS OF COMPUTER SCIENCE, 2016, 26 (02) : 249 - 261
  • [48] On the chromatic number of disjointness graphs of curves
    Pach, Janos
    Tomon, Istvan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 144 : 167 - 190
  • [49] Cycle lengths and chromatic number of graphs
    Mihók, P
    Schiermeyer, I
    DISCRETE MATHEMATICS, 2004, 286 (1-2) : 147 - 149
  • [50] On the chromatic number of integral circulant graphs
    Ilic, Aleksandar
    Basic, Milan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (01) : 144 - 150