A note on orientation and chromatic number of graphs

被引:0
|
作者
Manouchehr Zaker
机构
[1] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2017年 / 34卷
关键词
Graph coloring; Chromatic number; Acyclic orientation; Degenerate subgraph; 05C15; 05C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be any edge orientation of a graph G. We denote by Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} the maximum value t for which there exists a directed path v1,…,vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_1, \ldots , v_k$$\end{document} such that dout(vk)=t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)=t$$\end{document}, where dout(vk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)$$\end{document} is the out-degree of vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_k$$\end{document} in D. We first obtain some bounds for the chromatic number of G in terms of Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and then show a relationship between Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and vertex partitions of a graph into degenerate subgraphs.
引用
收藏
页码:605 / 611
页数:6
相关论文
共 50 条
  • [31] The Chromatic Number of Joins of Signed Graphs
    Amelia R. W. Mattern
    Graphs and Combinatorics, 2021, 37 : 2723 - 2735
  • [32] The oriented chromatic number of Hahn graphs
    Dybizbanski, Janusz
    Szepietowski, Andrzej
    INFORMATION PROCESSING LETTERS, 2014, 114 (1-2) : 45 - 49
  • [33] Results on the Grundy chromatic number of graphs
    Zaker, Manouchehr
    DISCRETE MATHEMATICS, 2006, 306 (23) : 3166 - 3173
  • [34] Geo chromatic number of certain graphs
    Paul, R. Joseph
    Mary, U.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (01) : 11 - 16
  • [35] Large Chromatic Number and Ramsey Graphs
    Csaba Biró
    Zoltán Füredi
    Sogol Jahanbekam
    Graphs and Combinatorics, 2013, 29 : 1183 - 1191
  • [36] Circular chromatic number and Mycielski graphs
    Liu, HM
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (02) : 314 - 320
  • [37] Weighted graphs: Eigenvalues and chromatic number
    Delorme, C.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2016, 4 (01) : 8 - 17
  • [38] On the chromatic number of structured Cayley graphs
    Bardestani, Mohammad
    Mallahi-Karai, Keivan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 160 : 202 - 216
  • [39] On the Chromatic Edge Stability Number of Graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Movarraei, Nazanin
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1539 - 1551
  • [40] On the Chromatic Edge Stability Number of Graphs
    Arnfried Kemnitz
    Massimiliano Marangio
    Nazanin Movarraei
    Graphs and Combinatorics, 2018, 34 : 1539 - 1551