A note on orientation and chromatic number of graphs

被引:0
|
作者
Manouchehr Zaker
机构
[1] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2017年 / 34卷
关键词
Graph coloring; Chromatic number; Acyclic orientation; Degenerate subgraph; 05C15; 05C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be any edge orientation of a graph G. We denote by Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} the maximum value t for which there exists a directed path v1,…,vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_1, \ldots , v_k$$\end{document} such that dout(vk)=t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)=t$$\end{document}, where dout(vk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)$$\end{document} is the out-degree of vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_k$$\end{document} in D. We first obtain some bounds for the chromatic number of G in terms of Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and then show a relationship between Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and vertex partitions of a graph into degenerate subgraphs.
引用
收藏
页码:605 / 611
页数:6
相关论文
共 50 条
  • [21] A note on chromatic properties of threshold graphs
    Ries, Bernard
    de Werra, Dominique
    Zenklusen, Rico
    DISCRETE MATHEMATICS, 2012, 312 (10) : 1838 - 1843
  • [22] The thickness and chromatic number of r-inflated graphs
    Albertson, Michael O.
    Boutin, Debra L.
    Gethner, Ellen
    DISCRETE MATHEMATICS, 2010, 310 (20) : 2725 - 2734
  • [23] Two bounds of chromatic number in graphs coloring problem
    Gueham, Assia
    Nagih, Anass
    Haddadene, Hacene Ait
    2014 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2014, : 292 - 296
  • [24] Asymptotics of the Chromatic Number for Quasi-Line Graphs
    King, Andrew D.
    Reed, Bruce
    JOURNAL OF GRAPH THEORY, 2013, 73 (03) : 327 - 341
  • [25] RESULTS ON GRUNDY CHROMATIC NUMBER OF JOIN GRAPH OF GRAPHS
    Maragatham, R. Stella
    Subramanian, A.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 40 (01): : 87 - 100
  • [26] CIRCULAR CHROMATIC NUMBER AND MYCIELSKI GRAPHS
    刘红美
    Acta Mathematica Scientia, 2006, (02) : 314 - 320
  • [27] The Chromatic Number of Joins of Signed Graphs
    Mattern, Amelia R. W.
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2723 - 2735
  • [28] THE CHROMATIC NUMBER OF RANDOM INTERSECTION GRAPHS
    Rybarczyk, Katarzyna
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (02) : 465 - 476
  • [29] Orientations of graphs with uncountable chromatic number
    Soukup, Daniel T.
    JOURNAL OF GRAPH THEORY, 2018, 88 (04) : 606 - 630
  • [30] On Chromatic Number of Colored Mixed Graphs
    Das, Sandip
    Nandi, Soumen
    Sen, Sagnik
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, 2017, 10156 : 130 - 140