A note on orientation and chromatic number of graphs

被引:0
|
作者
Manouchehr Zaker
机构
[1] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2017年 / 34卷
关键词
Graph coloring; Chromatic number; Acyclic orientation; Degenerate subgraph; 05C15; 05C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be any edge orientation of a graph G. We denote by Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} the maximum value t for which there exists a directed path v1,…,vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_1, \ldots , v_k$$\end{document} such that dout(vk)=t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)=t$$\end{document}, where dout(vk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)$$\end{document} is the out-degree of vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_k$$\end{document} in D. We first obtain some bounds for the chromatic number of G in terms of Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and then show a relationship between Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and vertex partitions of a graph into degenerate subgraphs.
引用
收藏
页码:605 / 611
页数:6
相关论文
共 50 条