A note on orientation and chromatic number of graphs

被引:0
作者
Manouchehr Zaker
机构
[1] Institute for Advanced Studies in Basic Sciences,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2017年 / 34卷
关键词
Graph coloring; Chromatic number; Acyclic orientation; Degenerate subgraph; 05C15; 05C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be any edge orientation of a graph G. We denote by Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} the maximum value t for which there exists a directed path v1,…,vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_1, \ldots , v_k$$\end{document} such that dout(vk)=t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)=t$$\end{document}, where dout(vk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d^{out}(v_k)$$\end{document} is the out-degree of vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_k$$\end{document} in D. We first obtain some bounds for the chromatic number of G in terms of Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and then show a relationship between Δk(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _k(D)$$\end{document} and vertex partitions of a graph into degenerate subgraphs.
引用
收藏
页码:605 / 611
页数:6
相关论文
共 17 条
[1]  
Alon N(1992)Colorings and orientations of graphs Combinatorica 12 125-134
[2]  
Tarsi M(1999)Generating all the acyclic orientations of an undirected graph Inf Process Lett 72 71-74
[3]  
Barbosa VC(1979)Acyclic orientations of a graph and chromatic and independence numbers J Comb Theory Ser B 26 101-110
[4]  
Szwarcfiter JL(2008)Acyclic orientations with path constraints RAIRO Oper Res 42 455-467
[5]  
Deming RW(2009)Decomposing a planar graph of girth J Comb Theory Ser B 99 674-684
[6]  
Figueiredo RMV(1953) into an independent set and a forest Ann of Math 58 573-580
[7]  
Barbosa VC(1967)Solutions of irreflexive relations Rev Fr Autom Inf Rech Opér sér Rouge 1 127-132
[8]  
Maculan N(1962)Nombre chromatique et plus longs chemins d’un graphe Dokl Akad Nauk SSSR 147 758-759
[9]  
de Souza CC(2006)Determination of minimal coloring of vertices of a graph by means of Boolean powers of the incidence matrix (Russian) Discret Math 306 1207-1216
[10]  
Kawarabayashi K(2008)Partition the vertices of a graph into one independent set and one acyclic set J Gr Theory 58 110-122