Using Morphed Images to Study Visual Detection of Cutaneous Melanoma Symptom Evolution

被引:0
|
作者
Elizabeth A. Dalianis
Thomas S. Critchfield
Niki L. Howard
J. Scott Jordan
Adam Derenne
机构
[1] Illinois State University,Department of Psychology
[2] University of North Dakota,undefined
来源
The Psychological Record | 2011年 / 61卷
关键词
melanoma; skin cancer; method of limits; psychophysics; college students;
D O I
暂无
中图分类号
学科分类号
摘要
Early detection attenuates otherwise high mortality from the skin cancer melanoma, and although major melanoma symptoms are well defined, little is known about how individuals detect them. Previous research has focused on identifying static stimuli as symptomatic vs. asymptomatic, whereas under natural conditions it is changes in skin lesions that most demand vigilance. Three experiments explored detection-of-change behavior using a series of images in which melanoma symptoms gradually increased in severity. Goals included exploring perceptual properties of the images in generalization-testing and modified psychophysical procedures, and examining the smallest amount of change in symptom severity that was detected in laboratory conditions vs. an approximation of field conditions. Precise measurement of detection behavior is seen as a prerequisite to evaluating the effectiveness of interventions for improving skin self-examination.
引用
收藏
页码:341 / 361
页数:20
相关论文
共 45 条
  • [1] USING MORPHED IMAGES TO STUDY VISUAL DETECTION OF CUTANEOUS MELANOMA SYMPTOM EVOLUTION
    Dalianis, Elizabeth A.
    Critchfield, Thomas S.
    Howard, Niki L.
    Jordan, J. Scott
    Derenne, Adam
    PSYCHOLOGICAL RECORD, 2011, 61 (03) : 341 - 361
  • [2] Melanoma Detection in Dermoscopic Images: A Bag of Visual Words Approach
    Okur, Erdem
    Turkan, Mehmet
    2022 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO'22), 2022,
  • [3] MelaNet: an effective deep learning framework for melanoma detection using dermoscopic images
    Samira Lafraxo
    Mohamed El Ansari
    Said Charfi
    Multimedia Tools and Applications, 2022, 81 : 16021 - 16045
  • [4] MelaNet: an effective deep learning framework for melanoma detection using dermoscopic images
    Lafraxo, Samira
    El Ansari, Mohamed
    Charfi, Said
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (11) : 16021 - 16045
  • [5] Improving the Performance of Melanoma Detection in Dermoscopy Images Using Deep CNN Features
    Gajera, Himanshu K.
    Zaveri, Mukesh A.
    Nayak, Deepak Ranjan
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2021), 2021, : 349 - 354
  • [6] Visual images for patient skin self-examination and melanoma detection: A systematic review of published studies
    McWhirter, Jennifer E.
    Hoffman-Goetz, Laurie
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2013, 69 (01) : 47 - +
  • [7] Melanoma Detection in Dermoscopic Images Using a Cellular Automata Classifier
    Luna-Benoso, Benjamin
    Martinez-Perales, Jose Cruz
    Cortes-Galicia, Jorge
    Flores-Carapia, Rolando
    Silva-Garcia, Victor Manuel
    COMPUTERS, 2022, 11 (01)
  • [8] Fluorescence in situ detection of human cutaneous melanoma:: Study of diagnostic parameters of the method
    Chwirot, BW
    Chwirot, S
    Sypniewska, N
    Michniewicz, Z
    Redzinski, J
    Kurzawski, G
    Ruka, W
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2001, 117 (06) : 1449 - 1451
  • [9] Detection of metastases in patients with cutaneous melanoma using FDG-PET/CT
    Akcali, C.
    Zincirkeser, S.
    Erbagcy, Z.
    Akcali, A.
    Halac, M.
    Durak, G.
    Sager, S.
    Sahin, E.
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2007, 35 (04) : 547 - 553
  • [10] Benign/Malignant Skin Melanoma Detection from Dermoscopy Images using Lightweight Deep Transfer Learning
    Vijayakumar, K.
    Maziz, Mohammad Nazmul Hasan
    Ramadasan, Swaetha
    Balaji, G.
    Prabha, S.
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,