On topological and metric critical point theory

被引:0
作者
Marco Degiovanni
机构
[1] Università Cattolica del Sacro Cuore,Dipartimento di Matematica e Fisica
来源
Journal of Fixed Point Theory and Applications | 2010年 / 7卷
关键词
Primary 58E05; Secondary 35J66; Critical point theory; nonsmooth analysis; quasilinear elliptic equations;
D O I
暂无
中图分类号
学科分类号
摘要
Starting from the concept of Morse critical point, introduced in [19], we propose a possible approach to critical point theory for continuous functionals defined on topological spaces, which includes some classical results, also in an infinite-dimensional setting.
引用
收藏
页码:85 / 102
页数:17
相关论文
共 42 条
[1]  
Arcoya D.(1996)Critical points for multiple integrals of the calculus of variations Arch. Ration. Mech. Anal. 134 249-274
[2]  
Boccardo L.(1995)Multiplicity of solutions for quasilinear elliptic equations Topol. Methods Nonlinear Anal. 6 357-370
[3]  
Canino A.(1981)Variational methods for nondifferentiable functionals and their applications to partial differential equations J. Math. Anal. Appl. 80 102-129
[4]  
Chang K.-C.(1995)Morse theory for continuous functionals J. Math. Anal. Appl. 196 1050-1072
[5]  
Corvellec J.-N.(1997)A general approach to the min-max principle Z. Anal. Anwendungen 16 405-433
[6]  
Corvellec J.-N.(1993)Deformation properties for continuous functionals and critical point theory Topol. Methods Nonlinear Anal. 1 151-171
[7]  
Corvellec J.-N.(1980)Problemi di evoluzione in spazi metrici e curve di massima pendenza Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68 180-187
[8]  
Degiovanni M.(2003)On Morse theory for continuous functionals Conf. Semin. Mat. Univ. Bari 290 1-22
[9]  
Marzocchi M.(2007)Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity Ann. Inst. H. Poincaré Anal. Non Linéaire 24 907-919
[10]  
De Giorgi E.(2009)Linking solutions for quasilinear equations at critical growth involving the “1-Laplace” operator Calc. Var. Partial Differential Equations 36 591-609