Surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^2\times\mathbb{R}}$$\end{document} with a canonical principal direction

被引:1
|
作者
Franki Dillen
Johan Fastenakels
Joeri Van der Veken
机构
[1] Katholieke Universiteit Leuven,Departement Wiskunde
关键词
Minimal surfaces; Flat; Product manifold; 53B25;
D O I
10.1007/s10455-008-9140-x
中图分类号
学科分类号
摘要
We show a way to choose nice coordinates on a surface in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^2 \times \mathbb{R}}$$\end{document} and use this to study minimal surfaces. We show that only open parts of cylinders over a geodesic in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^2}$$\end{document} are both minimal and flat. We also show that the condition that the projection of the direction tangent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} onto the tangent space of the surface is a principal direction, is equivalent to the condition that the surface is normally flat in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{E}^4}$$\end{document} . We present classification theorems under the extra assumption of minimality or flatness.
引用
收藏
页码:381 / 396
页数:15
相关论文
共 18 条