On the Cohomology of Certain Rank 2 Vector Bundles on G/B

被引:0
作者
M. Fazeel Anwar
机构
[1] Sukkur IBA University,Department of Mathematics
来源
Algebras and Representation Theory | 2019年 / 22卷
关键词
Algebraic groups; Flag varieties; Cohomology; Vector bundles; 20G05; 20G10; 20G15; 17B10;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a semisimple, simply connected, linear algebraic group over an algebraically closed field k. Donkin (In J. Algebra, 307, 570–613 2007), Donkin gave a recursive description for the characters of the cohomology of line bundles on the three dimensional flag variety in prime characteristic. The recursion involves not only line bundles but also certain natural rank 2 bundles associated to two dimensional B −modules Nα(λ), where λ in an integral weight and α is a simple root. In this paper we compute the cohomology of these rank 2 bundles and simplify the recursion in Donkin (In J. Algebra, 307, 570–613 2007). We also compute the socle of Nα(λ) and give a rank 2 version of Kempf’s vanishing theorem.
引用
收藏
页码:1101 / 1108
页数:7
相关论文
共 5 条
  • [1] Andersen HH(1979)The first cohomology group of line bundle on G/B Invent. Math. 51 287-296
  • [2] Anwar MF(2012)On the cohomology of certain homogeneous vector bundles of G/B in characteristic zero J. Pure Appl. Algebra 216 1160-1163
  • [3] Demazure M(1976)A very simple proof of bott’s theorem Invent. math. 33 271-272
  • [4] Donkin S(2007)The cohomology of line bundles on the three-dimensional flag variety J. Algebra 307 570-613
  • [5] Jantzen JC(1980)Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne Journal fü,r die reine und angewandte Mathematik 317 157-199