Nonlinear preserver problems on B(H)

被引:0
作者
Jian Lian Cui
机构
[1] University of Tsinghua,Department of Mathematical Science
来源
Acta Mathematica Sinica, English Series | 2011年 / 27卷
关键词
Star order; fundamental operator algebras; nest algebras; preserver problems; 47B49;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a complex Hilbert space of dimension greater than 2, and B(H) denote the Banach algebra of all bounded linear operators on H. For A, B ∈ B(H), define the binary relation A ≤* B by A*A = A*B and AA* = AB*. Then (B(H), “≤*”) is a partially ordered set and the relation “≤*” is called the star order on B(H). Denote by Bs(H) the set of all self-adjoint operators in B(H). In this paper, we first characterize nonlinear continuous bijective maps on Bs(H) which preserve the star order in both directions. We characterize also additive maps (or linear maps) on B(H) (or nest algebras) which are multiplicative at some invertible operator.
引用
收藏
页码:193 / 202
页数:9
相关论文
共 19 条
  • [1] Molnár L.(2001)Order-automorphisms of the set of bounded observables J. Math. Phys. 42 5904-5909
  • [2] Olson M. P.(1971)The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice Proc. Amer. Math. Soc. 28 537-544
  • [3] Molnár L.(2007)Spectral order automorphisms of the spaces of Hilbert space effects and observables Lett. Math. Phys. 80 239-255
  • [4] Šemrl P.(1961)Relative Hermitian matrices Pacific J. Math. 11 224-245
  • [5] Hestenes M. R.(1958)Pseudoinverse in associative rings and semigroups Amer. Math. Monthly 65 506-514
  • [6] Drazin M. P.(2006)An order for quantum observable Math. Slovaca 56 573-166
  • [7] Gudder S.(2007)Maps on quantum observables preserving the gudder order Reports on Math. Phys. 60 159-530
  • [8] Dolinar G.(2002)Characterizations of nest algebra automorphisms (in Chinese) Chinese Ann. Math. Ser. A 23 521-91
  • [9] Molnár L.(2002)Linear maps on von Neumann algebras preserving zero products or tr-rank Bull. Aust. Math. Soc. 65 79-370
  • [10] Cui J. L.(1993)Linear mappings preserving square-zero matrices Bull. Aust. Math. Soc. 48 365-465