Dynamical behaviour of parametrically driven Duffing and externally driven Helmholtz–Duffing oscillators under nonlinear dissipation

被引:0
作者
Vinod Patidar
Anjali Sharma
G. Purohit
机构
[1] Sir Padampat Singhania University,Department of Physics, School of Engineering
来源
Nonlinear Dynamics | 2016年 / 83卷
关键词
Chaos; Nonlinear oscillators; Duffing oscillator ; Helmholtz–Duffing oscillator; Nonlinear dissipation/damping; 37D45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we mainly focus our attention on the global dynamical behaviour of some ubiquitous nonlinear oscillators under the presence of nonlinear dissipation. We particularly consider the parametrically driven Duffing oscillator and externally driven Helmholtz–Duffing oscillators with nonlinear dissipation term proportional to the power of velocity (vvp-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v\left| v \right| ^{p-1})$$\end{document}. We obtain the threshold condition for the occurrence of chaos analytically as well as numerically for all the cases p=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=$$\end{document}1, 2, 3 and 4. We also identify the regions of 2D parameter space (consisting of external forcing amplitude and damping coefficient) corresponding to various asymptotic dynamics and analyse the effect of nonlinear damping on the overall dynamical behaviour of these nonlinear oscillators.
引用
收藏
页码:375 / 388
页数:13
相关论文
共 72 条
[1]  
Sanjuan MAF(1999)The effect of nonlinear damping on the universal escape oscillator Int. J. Bifurc. Chaos 9 735-744
[2]  
Trueba JL(2000)Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators Int. J. Bifurc. Chaos 10 2257-2267
[3]  
Rams J(2001)Energy dissipation in nonlinearly damped Duffing oscillator Phys. D 159 22-34
[4]  
Sanjuan MAF(2007)Vibration of generalized double well oscillators Z. Angew. Math. Mech. 87 590-602
[5]  
Baltanas JP(2007)Vibration of the duffing oscillator: effect of fractional damping Shock Vib. 14 29-36
[6]  
Trueba JL(2009)Effect of nonlinear dissipation on the boundaries of basin of attraction in two-well Rayleigh–Duffing oscillators Chaos Solitons Fractals 39 1092-1099
[7]  
Sanjuan MAF(2009)Transition to chaos in the self-excited system with a cubic double well potential and parametric forcing Chaos Solitons Fractals 40 2414-2429
[8]  
Litak G(2009)On the occurrence of chaos in a parametrically driven extended Rayleigh oscillator with three-well potential Chaos Solitons Fractals 41 772-782
[9]  
Borowiec M(2010)Melnikov chaos in a periodically driven Rayleigh–Duffing oscillator Mech. Res. Commun. 17 363-368
[10]  
Syta A(2012)Effects of bifurcation and chaos in forced Duffing oscillator due to nonlinear damping Commun. Nonlinear Sci. Numer. Simul 17 2254-2269