共 35 条
On existence of Two Classes of Generalized Howell Designs with Block Size Three and Index Two
被引:0
作者:
Jing Shi
Jinhua Wang
机构:
[1] Nantong University,School of Sciences
来源:
Graphs and Combinatorics
|
2020年
/
36卷
关键词:
Generalized Howell design;
Group divisible design;
Doubly resolvable;
Frame;
Multiply constant-weight code;
05B05;
05B15;
05B30;
94B25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let t,k,λ,s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t, k, {\lambda }, s$$\end{document} and v be nonnegative integers, and let X be a set of v symbols. A generalized Howell design, denoted t-GHDk(s,v;λ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_k (s, v; {\lambda })$$\end{document}, is an s×s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s \times s$$\end{document} array, each cell of which is either empty or contains a k-set of symbols from X, called a block, such that: (i) each symbol appears exactly once in each row and in each column (i.e. each row and column is a resolution of X); (ii) no t-subset of elements from X appears in more than λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\lambda }$$\end{document} cells. A generalized Howell design is a class of doubly resolvable designs , which generalize a number of well-known objects. Particular instances of the parameters correspond to generalized Howell designs are doubly resolvable group divisible designs (DRGDDs). In this paper, we concentrate on the case that t=2,k=3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t=2,k=3$$\end{document} and λ=2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\lambda }= 2$$\end{document}, and simply write GHD(s, v; 2). The spectrum of GHD(3n-3,3n;2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(3n-3,3n;2)$$\end{document}’s and GHD(6n-6,6n;2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(6n-6,6n;2)$$\end{document}’s is completely established by solving the existence of (3, 2)-DRGDDs of types 3n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3^n$$\end{document} and 6n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$6^n$$\end{document}. At the same time, we also survey rummage the existence of GHD4(n,4n;1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_4(n,4n;1)$$\end{document}’s. As their applications, several new classes of multiply constant-weight codes are obtained.
引用
收藏
页码:1525 / 1543
页数:18
相关论文
共 35 条