On existence of Two Classes of Generalized Howell Designs with Block Size Three and Index Two

被引:0
作者
Jing Shi
Jinhua Wang
机构
[1] Nantong University,School of Sciences
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Generalized Howell design; Group divisible design; Doubly resolvable; Frame; Multiply constant-weight code; 05B05; 05B15; 05B30; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let t,k,λ,s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t, k, {\lambda }, s$$\end{document} and v be nonnegative integers, and let X be a set of v symbols. A generalized Howell design, denoted t-GHDk(s,v;λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_k (s, v; {\lambda })$$\end{document}, is an s×s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \times s$$\end{document} array, each cell of which is either empty or contains a k-set of symbols from X, called a block, such that: (i) each symbol appears exactly once in each row and in each column (i.e. each row and column is a resolution of X); (ii) no t-subset of elements from X appears in more than λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }$$\end{document} cells. A generalized Howell design is a class of doubly resolvable designs , which generalize a number of well-known objects. Particular instances of the parameters correspond to generalized Howell designs are doubly resolvable group divisible designs (DRGDDs). In this paper, we concentrate on the case that t=2,k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=2,k=3$$\end{document} and λ=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }= 2$$\end{document}, and simply write GHD(s, v; 2). The spectrum of GHD(3n-3,3n;2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3n-3,3n;2)$$\end{document}’s and GHD(6n-6,6n;2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(6n-6,6n;2)$$\end{document}’s is completely established by solving the existence of (3, 2)-DRGDDs of types 3n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^n$$\end{document} and 6n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6^n$$\end{document}. At the same time, we also survey rummage the existence of GHD4(n,4n;1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4(n,4n;1)$$\end{document}’s. As their applications, several new classes of multiply constant-weight codes are obtained.
引用
收藏
页码:1525 / 1543
页数:18
相关论文
共 71 条
[31]  
Zhang H(undefined)On the structure and classification of SOMAs: generalizations of mutually orthogonal Latin squares undefined undefined undefined-undefined
[32]  
Zhang X(undefined)The existence of Howell designs of odd side undefined undefined undefined-undefined
[33]  
Colbourn CJ(undefined)Four mutually orthogonal Latin squares of order 14 undefined undefined undefined-undefined
[34]  
Curran D(undefined)On mutually orthogonal resolutions and near resolutions undefined undefined undefined-undefined
[35]  
Vanstone SA(undefined)Optimal multiply constant-weight codes from generalized Howell designs undefined undefined undefined-undefined
[36]  
Colbourn CJ(undefined)undefined undefined undefined undefined-undefined
[37]  
Lamken ER(undefined)undefined undefined undefined undefined-undefined
[38]  
Ling ACH(undefined)undefined undefined undefined undefined-undefined
[39]  
Mills WH(undefined)undefined undefined undefined undefined-undefined
[40]  
Colbourn CJ(undefined)undefined undefined undefined undefined-undefined