On existence of Two Classes of Generalized Howell Designs with Block Size Three and Index Two

被引:0
|
作者
Jing Shi
Jinhua Wang
机构
[1] Nantong University,School of Sciences
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Generalized Howell design; Group divisible design; Doubly resolvable; Frame; Multiply constant-weight code; 05B05; 05B15; 05B30; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let t,k,λ,s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t, k, {\lambda }, s$$\end{document} and v be nonnegative integers, and let X be a set of v symbols. A generalized Howell design, denoted t-GHDk(s,v;λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_k (s, v; {\lambda })$$\end{document}, is an s×s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \times s$$\end{document} array, each cell of which is either empty or contains a k-set of symbols from X, called a block, such that: (i) each symbol appears exactly once in each row and in each column (i.e. each row and column is a resolution of X); (ii) no t-subset of elements from X appears in more than λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }$$\end{document} cells. A generalized Howell design is a class of doubly resolvable designs , which generalize a number of well-known objects. Particular instances of the parameters correspond to generalized Howell designs are doubly resolvable group divisible designs (DRGDDs). In this paper, we concentrate on the case that t=2,k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=2,k=3$$\end{document} and λ=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }= 2$$\end{document}, and simply write GHD(s, v; 2). The spectrum of GHD(3n-3,3n;2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3n-3,3n;2)$$\end{document}’s and GHD(6n-6,6n;2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(6n-6,6n;2)$$\end{document}’s is completely established by solving the existence of (3, 2)-DRGDDs of types 3n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^n$$\end{document} and 6n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6^n$$\end{document}. At the same time, we also survey rummage the existence of GHD4(n,4n;1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4(n,4n;1)$$\end{document}’s. As their applications, several new classes of multiply constant-weight codes are obtained.
引用
收藏
页码:1525 / 1543
页数:18
相关论文
共 35 条
  • [1] On existence of Two Classes of Generalized Howell Designs with Block Size Three and Index Two
    Shi, Jing
    Wang, Jinhua
    GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1525 - 1543
  • [2] Frames and Doubly Resolvable Group Divisible Designs with Block Size Three and Index Two
    Dong, Xiaoyuan
    Wang, Jinhua
    GRAPHS AND COMBINATORICS, 2023, 39 (05)
  • [3] Frames and Doubly Resolvable Group Divisible Designs with Block Size Three and Index Two
    Xiaoyuan Dong
    Jinhua Wang
    Graphs and Combinatorics, 2023, 39
  • [4] Existence of generalized Bhaskar Rao designs with block size 3
    Abel, R. Julian R.
    Combe, Diana
    Price, Georgina
    Palmer, William D.
    DISCRETE MATHEMATICS, 2009, 309 (12) : 4069 - 4078
  • [5] Existence of Incomplete Transversal Designs with Block Size Five and Any Index λ
    Abel R.J.R.
    Colbourn C.J.
    Yin J.
    Zhang H.
    Designs, Codes and Cryptography, 1997, 10 (3) : 275 - 307
  • [6] Some new group divisible designs with block size 4 and two or three group sizes
    Abel, R. Julian R.
    Bunjamin, Yudhistira A.
    Combe, Diana
    JOURNAL OF COMBINATORIAL DESIGNS, 2020, 28 (08) : 614 - 628
  • [7] Group divisible designs with block size four and two groups
    Hurd, Spencer P.
    Sarvate, Dinesh G.
    DISCRETE MATHEMATICS, 2008, 308 (13) : 2663 - 2673
  • [8] Uniformly resolvable designs with index one, block sizes three and five and up to five parallel classes with blocks of size five
    Schuster, Ernst
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4435 - 4442
  • [9] Frames with block size four and index three
    Furino, S
    Kageyama, S
    Ling, ACH
    Miao, Y
    Yin, JX
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 106 (1-2) : 117 - 124
  • [10] α-Resolvable Group Divisible Designs with Block Size Four and Group Size Three
    Qian, Yan
    Meng, Zhaoping
    Du, Beiliang
    UTILITAS MATHEMATICA, 2008, 77 : 201 - 224