A new algorithm for solving multi-valued variational inequality problems

被引:0
作者
Xi Zhang
Wenling Zhao
Meng Zhang
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
来源
Journal of Applied Mathematics and Computing | 2020年 / 62卷
关键词
Multi-valued variational inequality; Inertial subgradient extragradient algorithm; Global convergence; Q-linear convergence; 49; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a new algorithm for solving multi-valued variational inequality problems, which combines the subgradient extragradient algorithm with inertial algorithm. We prove that the algorithm is globally convergent when the multi-valued mapping is continuous and pseudomonotone with nonempty compact convex values. And the convergence rate of this algorithm is Q-linear convergence.
引用
收藏
页码:685 / 699
页数:14
相关论文
共 39 条
[1]  
Parida J(1987)A variational-like inequality for multifunctions with applications J. Math. Anal. Appl. 124 73-81
[2]  
Sen A(2003)Multivalued general equilibrium problems J. Math. Anal. Appl. 283 140-149
[3]  
Noor MA(2006)Regularization of non-monotone multi-valued variational inequalities with applications to partitionable problems Pure Math. Appl. 1–2 1-12
[4]  
Allevi E(2001)A trust region algorithm for variational inequality problems with inequality constraints Numer. Math. J. Chin. Univ. 12 2857-140
[5]  
Gnudi A(2003)A new hybrid generalized proximal point algorithm for variational inequality problems J. Glob. Optim. 26 125-244
[6]  
Yufei Y(2003)A proximal decomposition algorithm for variational inequality problems J. Comput. Appl. Math. 161 231-2605
[7]  
Zhongzhi Z(2010)An interior point algorithm for variational inequality problems Int. J. Contemp. Math. Sci. 52 2595-585
[8]  
Han D(2003)Some recent advances in projection-type algorithms for variational inequalities J. Comput. Appl. Math. 152 559-221
[9]  
Han D(2019)An explicit parallel algorithm for variational inequalities J. Bull. Malays. Math. Sci. Soc. 42 201-C756
[10]  
Fan X(1976)The extragradient method for finding saddle points and other problems Ekon. Mat. Metody 12 C747-335