Computing Gaussian quadrature rules with high relative accuracy

被引:0
作者
Teresa Laudadio
Nicola Mastronardi
Paul Van Dooren
机构
[1] Consiglio Nazionale delle Ricerche,Istituto per le Applicazioni del Calcolo “M. Picone”
[2] Catholic University of Louvain,Department of Mathematical Engineering
来源
Numerical Algorithms | 2023年 / 92卷
关键词
Gaussian quadrature rule; Golub and Welsch algorithm; Singular value decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
The computation of n-point Gaussian quadrature rules for symmetric weight functions is considered in this paper. It is shown that the nodes and the weights of the Gaussian quadrature rule can be retrieved from the singular value decomposition of a bidiagonal matrix of size n/2. The proposed numerical method allows to compute the nodes with high relative accuracy and a computational complexity of O(n2).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal {O} (n^{2}). $\end{document} We also describe an algorithm for computing the weights of a generic Gaussian quadrature rule with high relative accuracy. Numerical examples show the effectiveness of the proposed approach.
引用
收藏
页码:767 / 793
页数:26
相关论文
共 33 条
[1]  
Bart H(1980)Factorization of transfer functions SIAM J. Contr. 18 675-696
[2]  
Gohberg I(1968)The QR and QL algorithms for symmetric matrices Numer. Math. 11 293-306
[3]  
Kaashoek M(1990)Accurate singular values of bidiagonal matrices SIAM J. Sci. Stat. Comput. 11 873-912
[4]  
Van Dooren P(1994)Accurate singular values and differential qd algorithms Numer. Math. 67 191-230
[5]  
Bowdler H(1967)Computational aspects of three–term recurrence relations SIAM Rev. 9 24-82
[6]  
Martin RS(2005)Orthogonal polynomials (in Matlab) J. Comput. Appl. Math. 178 215-234
[7]  
Reinsch C(2007)A fast algorithm for the calculation of the roots of special functions SIAM J. Sci. Comput. 29 1420-1438
[8]  
Wilkinson JH(1969)Calculation of Gauss quadrature rules Math. Comput. 23 221-230
[9]  
Demmel J(2013)Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi nodes and weights SIAM J. Sci. Comput. 35 A652-A674
[10]  
Kahan W(2012)Chebfun and numerical quadrature Sci. China Math. 55 1749-1760