Augmenting a (k - 1)-Vertex-Connected Multigraph ℓ-Edge-Connected and k-Vertex-Connected Multigraph

被引:0
作者
Toshimasa Ishii
Hiroshi Nagamochi
Toshihide Ibaraki
机构
[1] Department of Information and Computer Sciences,
[2] Toyohashi University of Technology,undefined
[3] Toyohashi 441-8580,undefined
[4] Department of Applied Mathematics and Physics,undefined
[5] Graduate School of Informatics,undefined
[6] Kyoto University,undefined
[7] Kyoto 606-8501,undefined
[8] Department of Informatics,undefined
[9] School of Science and Technology,undefined
[10] Kwansei Gakuin University,undefined
[11] Sanda 669-1337,undefined
来源
Algorithmica | 2006年 / 44卷
关键词
Undirected multigraph; Edge-connectivity; Vertex-connectivity; Graph augmentation; Polynomial time approximation algorithm; Deterministic algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
For two integers $k,\ell > 0$ and an undirected multigraph $G=(V,E)$, we consider the problem of augmenting $G$ by the smallest number of new edges to obtain an $\ell$-edge-connected and $k$-vertex-connected multigraph. In this paper we show that a $(k-1)$-vertex-connected multigraph $G$ can be made $\ell$-edge-connected and $k$-vertex-connected by adding at most $\bound$ surplus edges over the optimum in $O(\tm)$ time, where $n=|V|$.
引用
收藏
页码:257 / 280
页数:23
相关论文
empty
未找到相关数据