Constructions of negabent functions over finite fields

被引:0
作者
Yue Zhou
Longjiang Qu
机构
[1] National University of Defense Technology,College of Science
[2] Otto-von-Guericke University,Faculty of Mathematics
来源
Cryptography and Communications | 2017年 / 9卷
关键词
Negabent functions; Bent functions; Finite fields; Relative difference sets; Projective polynomials; 05B10; 11T06; 06E30; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Bent functions are actively investigated for their various applications in cryptography, coding theory and combinatorial design. As one of their generalizations, negabent functions are also quite useful, and they are originally defined via nega-Hadamard transforms for boolean functions. In this paper, we look at another equivalent definition of them. It allows us to investigate negabent functions f on F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document}, which can be written as a composition of a univariate polynomial over F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document} and the trace mapping from F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document} to F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2}$\end{document}. In particular, when this polynomial is a monomial, we call f a monomial negabent function. Families of quadratic and cubic monomial negabent functions are constructed, together with several sporadic examples. To obtain more interesting negabent functions in special forms, we also look at certain negabent polynomials. We obtain several families of cubic negabent functions by using the theory of projective polynomials over finite fields.
引用
收藏
页码:165 / 180
页数:15
相关论文
共 50 条
  • [31] Linear Codes From Perfect Nonlinear Functions Over Finite Fields
    Wu, Yanan
    Li, Nian
    Zeng, Xiangyong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (01) : 3 - 11
  • [32] Computing zeta functions of large polynomial systems over finite fields
    Cheng, Qi
    Rojas, J. Maurice
    Wan, Daqing
    JOURNAL OF COMPLEXITY, 2022, 73
  • [33] Constructions of (r, t)-LRC Based on Totally Isotropic Subspaces in Symplectic Space Over Finite Fields
    Wang, Gang
    Niu, Min-Yao
    Fu, Fang-Wei
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2020, 31 (03) : 327 - 339
  • [34] RECOVERING AFFINE CURVES OVER FINITE FIELDS FROM L-FUNCTIONS
    Booher, Jeremy
    Voloch, Jose Felipe
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 314 (01) : 1 - 28
  • [35] Restriction Operators Acting on Radial Functions on Vector Spaces over Finite Fields
    Koh, Doowon
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (04): : 834 - 844
  • [36] Bent and bent4 spectra of Boolean functions over finite fields
    Anbar, Nurdaguel
    Meidl, Wilfried
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 46 : 163 - 178
  • [37] A cubic transformation formula for Appell–Lauricella hypergeometric functions over finite fields
    Frechette S.
    Swisher H.
    Tu F.-T.
    Research in Number Theory, 2018, 4 (2)
  • [38] Deterministic Constructions of Compressed Sensing Matrices Based on Affine Singular Linear Space over Finite Fields
    Wang, Gang
    Niu, Min-Yao
    Gao, Jian
    Fu, Fang-Wei
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (11) : 1957 - 1963
  • [39] Full classification of permutation rational functions and complete rational functions of degree three over finite fields
    Ferraguti, Andrea
    Micheli, Giacomo
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (05) : 867 - 886
  • [40] Full classification of permutation rational functions and complete rational functions of degree three over finite fields
    Andrea Ferraguti
    Giacomo Micheli
    Designs, Codes and Cryptography, 2020, 88 : 867 - 886