Constructions of negabent functions over finite fields

被引:0
|
作者
Yue Zhou
Longjiang Qu
机构
[1] National University of Defense Technology,College of Science
[2] Otto-von-Guericke University,Faculty of Mathematics
来源
Cryptography and Communications | 2017年 / 9卷
关键词
Negabent functions; Bent functions; Finite fields; Relative difference sets; Projective polynomials; 05B10; 11T06; 06E30; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Bent functions are actively investigated for their various applications in cryptography, coding theory and combinatorial design. As one of their generalizations, negabent functions are also quite useful, and they are originally defined via nega-Hadamard transforms for boolean functions. In this paper, we look at another equivalent definition of them. It allows us to investigate negabent functions f on F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document}, which can be written as a composition of a univariate polynomial over F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document} and the trace mapping from F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{n}}$\end{document} to F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2}$\end{document}. In particular, when this polynomial is a monomial, we call f a monomial negabent function. Families of quadratic and cubic monomial negabent functions are constructed, together with several sporadic examples. To obtain more interesting negabent functions in special forms, we also look at certain negabent polynomials. We obtain several families of cubic negabent functions by using the theory of projective polynomials over finite fields.
引用
收藏
页码:165 / 180
页数:15
相关论文
共 50 条
  • [1] Constructions of negabent functions over finite fields
    Zhou, Yue
    Qu, Longjiang
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (02): : 165 - 180
  • [2] Several classes of negabent functions over finite fields
    Wu, Gaofei
    Li, Nian
    Zhang, Yuqing
    Liu, Xuefeng
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (03)
  • [3] Secondary constructions of (non)weakly regular plateaued functions over finite fields
    Mesnager, Sihem
    Ozbudak, Ferruh
    Sinak, Ahmet
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (05) : 2295 - 2306
  • [4] New constructions of involutions over finite fields
    Tailin Niu
    Kangquan Li
    Longjiang Qu
    Qiang Wang
    Cryptography and Communications, 2020, 12 : 165 - 185
  • [5] New constructions of involutions over finite fields
    Niu, Tailin
    Li, Kangquan
    Qu, Longjiang
    Wang, Qiang
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (02): : 165 - 185
  • [6] Several new constructions of mutually unbiased bases derived from functions over finite fields
    Qian, Liqin
    Cao, Xiwang
    QUANTUM INFORMATION PROCESSING, 2022, 21 (08)
  • [7] Hypergeometric functions over finite fields
    Noriyuki Otsubo
    The Ramanujan Journal, 2024, 63 : 55 - 104
  • [8] Hypergeometric functions over finite fields
    Otsubo, Noriyuki
    RAMANUJAN JOURNAL, 2024, 63 (01) : 55 - 104
  • [9] Hypergeometric Functions Over Finite Fields
    Fuselier, Jenny
    Long, Ling
    Ramakrishna, Ravi
    Swisher, Holly
    Tu, Fang-Ting
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 280 (1382) : 1 - +
  • [10] Nonlinearity of functions over finite fields
    Ryabov, Vladimir G.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2023, 33 (04) : 231 - 246