Atomic decomposition of Hardy spaces and characterization of BMO via Banach function spacesАтомное раэложение пространств Харди и характериэация ВМО череэ функциональные Банаховы пространства

被引:0
作者
Kwok-Pun Ho
机构
[1] The Hong Kong Institute of Education,Department of Mathematics and Information Technology
关键词
Function Space; Hardy Space; Atomic Decomposition; Variable Exponent; Banach Function Space;
D O I
10.1007/s10476-012-0302-5
中图分类号
学科分类号
摘要
An atomic decomposition of Hardy spaces by atoms associated with Banach function space is developed. Inspired by these decompositions, a criterion on a general Banach function space is introduced so that the characterization of BMO by using that Banach function space is valid.
引用
收藏
页码:173 / 185
页数:12
相关论文
共 22 条
[1]  
Aoyama H.(2009)Lebesgue spaces with variable exponent on a probability space Hiroshima Math. J. 39 207-216
[2]  
Boyd D.(1969)Indices of function spaces and their relationship to interpolation Canad. J. Math. 21 1245-1254
[3]  
Cruz-Uribe D.(2009)A new proof of the boundedness of maximal operators on variable Lebesgue spaces Boll. Unione Mat. Ital. 2 151-173
[4]  
Diening L.(2005)Maximal function on Orlicz-Musielak spaces and generalized Lebesgue space Bull. Sci. Math. 129 657-700
[5]  
Fiorenza A. A.(2009)Maximal functions in variable exponent spaces: limiting cases of the exponent Ann. Acad. Sci. Fenn. Math. 34 503-522
[6]  
Diening L.(2009)Characterization of BMO in terms of rearrangement-invariant Banach function spaces Expo. Math. 27 363-372
[7]  
Diening L.(2011)Littlewood-Paley spaces Math. Scand. 108 77-102
[8]  
Harjulehto P.(2011)Characterizations of BMO by Hiroshima Math. J. 41 153-165
[9]  
Hãstõ P.(2010) weights and Rend. Circ. Mat. Palermo 59 199-213
[10]  
Mizuta Y.(1991)-convexity Czechoslovak Math. J. 41 592-618