Deep Convolutional Neural Network for Microseismic Signal Detection and Classification

被引:0
|
作者
Hang Zhang
Chunchi Ma
Veronica Pazzi
Tianbin Li
Nicola Casagli
机构
[1] Chengdu University of Technology,State Key Laboratory of Geohazard Prevention and Geoenvironment Protection
[2] Chengdu University of Technology,College of Environment and Civil Engineering
[3] University of Florence,Department of Earth Sciences
来源
Pure and Applied Geophysics | 2020年 / 177卷
关键词
Microseismic waveform; deep learning; CNN; detection and classification;
D O I
暂无
中图分类号
学科分类号
摘要
Reliable automatic microseismic waveform detection with high efficiency, precision, and adaptability is the basis of stability analysis of the surrounding rock mass. In this paper, a convolutional neural network (CNN)-based microseismic detection network (CNN-MDN) model was established and well trained to a high degree of accuracy using a dataset with 16,000 preprocessed waveforms. By comparison with other methods, 4000 waveforms were tested to evaluate the precision, recall, and F1-score. The results revealed that the CNN-MDN demonstrated the highest performance in microseismic detection. Moreover, the low sensitivity of the CNN-MDN to noise of different intensities was proved by testing on semi-synthetic data. The model also possesses good generalization ability and superior performance capability for microseismic detection under different geological structure backgrounds, and it can correctly detect the microseismic events with Mw ≥ 0.5. These preliminary results show that the CNN-MDN can be directly applied to unprocessed microseismic data and has great potential in real-time microseismic monitoring applications.
引用
收藏
页码:5781 / 5797
页数:16
相关论文
共 50 条
  • [21] Classification and Detection of Cognitive Disorders like Depression and Anxiety Utilizing Deep Convolutional Neural Network (CNN) Centered on EEG Signal
    Mohan, Ranjani
    Perumal, Supraja
    TRAITEMENT DU SIGNAL, 2023, 40 (03) : 971 - 979
  • [22] Towards Deep Learning for Weed Detection: Deep Convolutional Neural Network Architectures for Plant Seedling Classification
    Ofori, Martinson
    El-Gayar, Omar
    AMCIS 2020 PROCEEDINGS, 2020,
  • [23] Intelligent Ammunition Detection and Classification System Using Convolutional Neural Network
    Ahmad, Gulzar
    Alanazi, Saad
    Alruwaili, Madallah
    Ahmad, Fahad
    Khan, Muhammad Adnan
    Abbas, Sagheer
    Tabassum, Nadia
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (02): : 2585 - 2600
  • [24] Classification of bearded seals signal based on convolutional neural network
    Kim, Ji Seop
    Yoon, Young Geul
    Han, Dong-Gyun
    La, Hyoung Sul
    Choi, Jee Woong
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2022, 41 (02): : 235 - 241
  • [25] Deep convolutional neural network-based diabetic eye disease detection and classification using thermal images
    Selvathi D.
    Suganya K.
    Menaka M.
    Venkatraman B.
    International Journal of Reasoning-based Intelligent Systems, 2021, 13 (02) : 106 - 114
  • [26] Human and object detection using Hybrid Deep Convolutional Neural Network
    Mukilan, P.
    Semunigus, Wogderess
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (07) : 1913 - 1923
  • [27] Weld defect detection with convolutional neural network: an application of deep learning
    Madhav, Manu
    Ambekar, Suhas Suresh
    Hudnurkar, Manoj
    ANNALS OF OPERATIONS RESEARCH, 2023,
  • [28] Human and object detection using Hybrid Deep Convolutional Neural Network
    P. Mukilan
    Wogderess Semunigus
    Signal, Image and Video Processing, 2022, 16 : 1913 - 1923
  • [29] Deep convolutional neural network for detection of pathological speech
    Vavrek, Lukas
    Hires, Mate
    Kumar, Dinesh
    Drotar, Peter
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 245 - 249
  • [30] Acupoint Detection Based on Deep Convolutional Neural Network
    Sun, Lingyao
    Sun, Shiying
    Fu, Yuanbo
    Zhao, Xiaoguang
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7418 - 7422