Stability analysis of HIV/AIDS epidemic model with nonlinear incidence and treatment

被引:0
作者
Jianwen Jia
Gailing Qin
机构
[1] Shanxi Normal University,School of Mathematical and Computer Science
来源
Advances in Difference Equations | / 2017卷
关键词
HIV/AIDS epidemic model; nonlinear incidence; basic reproduction number; global stability; geometric approach;
D O I
暂无
中图分类号
学科分类号
摘要
An HIV/AIDS epidemic model with general nonlinear incidence rate and treatment is formulated. The basic reproductive number ℜ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Re_{0}$\end{document} is obtained by use of the method of the next generating matrix. By carrying out an analysis of the model, we study the stability of the disease-free equilibrium and the unique endemic equilibrium by using the geometric approach for ordinary differential equations. Numerical simulations are given to show the effectiveness of the main results.
引用
收藏
相关论文
共 40 条
[1]  
Naresh R(2006)Modelling the spread of AIDS epidemic with vertical transmission Appl. Math. Comput. 178 262-272
[2]  
Tripathi A(2013)Mathematical analysis of drug resistance in vertical transmission of HIV/AIDS Open J. Epidemiol. 3 139-148
[3]  
Omar S(2002)A non-linear model for a sexually transmitted disease with contact tracing IMA J. Math. Appl. Med. Biol. 19 221-234
[4]  
Chibaya S(2011)An HIV/AIDS model with vertical transmission and time delay World J. Model. Simul. 7 230-240
[5]  
Kgosimore M(2012)Optimal strategy for controlling the spread of HIV/AIDS disease: a case study of South Africa J. Biol. Dyn. 6 475-494
[6]  
de Arazoza H(2016)Modelling and stability of HIV/AIDS epidemic model with treatment Appl. Math. Model. 40 6550-6559
[7]  
Lounes R(2012)Stability analysis of an SEIQV epidemic model with saturated incidence rate Nonlinear Anal., Real World Appl. 13 2671-2679
[8]  
Naresh R(1986)Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models J. Math. Biol. 23 187-204
[9]  
Sharma D(1991)Some epidemiological models with nonlinear incidence J. Math. Biol. 29 271-287
[10]  
Yusuf T(2016)Global stability of vaccine-age/staged-structured epidemic models with nonlinear incidence Electron. J. Qual. Theory Differ. Equ. 2016 1871-1896