Toeplitz operators with BMO and IMO symbols between Fock spaces

被引:0
作者
Ermin Wang
机构
[1] Lingnan Normal University,School of Mathematics and Statistics
来源
Archiv der Mathematik | 2020年 / 114卷
关键词
Fock spaces; Toeplitz operators; Boundedness; Primary 47B38; Secondary 32A37;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, given f∈BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in BMO$$\end{document}, for all possible 0<p<q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< p< q<\infty $$\end{document}, we characterize the boundedness (or compactness) of the Toeplitz operators Tf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{f}$$\end{document} from the Fock space Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^{p}$$\end{document} to Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^{q}$$\end{document}. With f∈IMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in IMO$$\end{document} (the space of integrable mean oscillation functions), for all possible 0<q<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< q< p<\infty $$\end{document}, we characterize those symbols f for which the Toeplitz operators Tf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{f}$$\end{document} are bounded (or compact) from Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^{p}$$\end{document} to Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^{q}$$\end{document}.
引用
收藏
页码:541 / 551
页数:10
相关论文
共 25 条
[1]  
Berger CA(1986)Toeplitz operators and quantum mechanics J. Funct. Anal. 68 273-299
[2]  
Coburn LA(1987)Toeplitz operators on the Segal–Bargmann space Trans. Am. Math. Soc. 301 813-829
[3]  
Berger CA(1994)Heat Flow and Berezin–Toeplitz estimates Am. J. Math. 116 563-590
[4]  
Coburn LA(2011)Toeplitz operators with Trans. Am. Math. Soc. 363 3015-3030
[5]  
Berger CA(2002) symbols on the Segal–Bargmann space Integral Equations Operator Theory 44 10-37
[6]  
Coburn LA(2011)Toeplitz operators on the Fock space: radial component effects Integral Equations Operator Theory 70 541-559
[7]  
Coburn LA(2014)Toeplitz operators from one Fock space to another Integral Equations Operator Theory 80 33-59
[8]  
Li B(2017)Toeplitz operators on Fock spaces Taiwanese J. Math. 21 467-487
[9]  
Isralowitz J(2018)Positive Toeplitz operators between different doubing Fock spaces Integral Equations Operator Theory 90 37-138
[10]  
Grudsky S(1987)Hankel operators between Fock spaces Rev. Mat. Iberoam. 3 61-358