Existence of positive solutions for fractional Kirchhoff equation

被引:0
作者
Ke Wu
Guangze Gu
机构
[1] Yunnan Normal University,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
Uniqueness; Positive solutions; Nonlocal operator; 74G30; 35B09; 47G20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the following Kirchhoff equation involving fractional Laplacian in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document}[graphic not available: see fulltext] where N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, a≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\ge 0$$\end{document}, b,μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b,\mu >0$$\end{document}, 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, and (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document} is the fractional Laplacian with order s. By reducing (K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K})$$\end{document} to an equivalent system, we obtain the existence of a positive solution of (K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K})$$\end{document} with general nonlinearities. The positive solution is unique if g(u)=|u|p-1u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(u)=|u|^{p-1}u$$\end{document}, 1<p<N+2sN-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\frac{N+2s}{N-2s}$$\end{document}. Moreover, if the function g is odd, the existence of infinitely many (sign-changing) solutions is concluded. As we shall see, for the case where 0<s≤N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s\le \frac{N}{4}$$\end{document}, a necessary condition of existence of nontrivial solutions of (K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K})$$\end{document} is that b is small. Our method works well for the so-called degenerate case a=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0$$\end{document}.
引用
收藏
相关论文
共 55 条
[1]  
Ambrosio V(2018)A multiplicity result for a fractional Kirchhoff equation in Commun. Contemp. Math. 20 1750054-64
[2]  
Isernia T(2017) with a general nonlinearity Nonlinear Anal. 155 52-714
[3]  
Ardila AH(2015)Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity Nonlinear Anal. 125 699-345
[4]  
Autuori G(1983)Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity Arch. Ration. Mech. Anal. 82 313-375
[5]  
Fiscella A(1983)Nonlinear scalar field equations. I. Existence of a ground state Arch. Ration. Mech. Anal. 82 347-2129
[6]  
Pucci P(2016)Nonlinear scalar field equations. II. Existence of infinitely many solutions Ann. Mat. Pura Appl. 195 2099-494
[7]  
Berestycki H(2013)Existence theorems for entire solutions of stationary Kirchhoff fractional Nonlinearity 26 479-2992
[8]  
Lions PL(2014)-Laplacian equations J. Differ. Equ. 256 2965-1262
[9]  
Berestycki H(2012)Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity Proc. R. Soc. Edinb. Sect. A 142 1237-170
[10]  
Lions PL(2014)Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian Nonlinear Anal. 94 156-1726