Numerical approximation for the mean curvature flow with nucleation using implicit time-stepping: An adaptive algorithm

被引:4
作者
Fierro F. [1 ]
机构
[1] Dipartimento di Matematica, Università di Milano, Via Saldini 50
关键词
Time Discretization; Numerical Approximation; Curvature Flow; Adaptive Algorithm; Discretization Scheme;
D O I
10.1007/s100920050017
中图分类号
学科分类号
摘要
In this paper we introduce a self-adaptive finite element algorithm for the mean curvature flow, which is based on the implicit time discretization scheme proposed by Almgren, Taylor and Wang [1] and by Luckhaus and Sturzenhecker [13]. Several numerical simulations of isotropic and anisotropic evolutions show the potential of this approach. We also present a generalization proposed by Visintin [17] for describing nucleation and annihilation. © Springer-Verlag 1998.
引用
收藏
页码:205 / 224
页数:19
相关论文
共 17 条
[1]  
Almgren, F., Taylor, J.E., Wang, L., Curvature-driven flows: A variational approach (1993) SIAM J. Control Optim., 31, pp. 387-438
[2]  
Bellettini, G., Paolini, M., Convex approximation of an inhomogeneous anisotropic functional (1994) Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 5, pp. 177-187
[3]  
Bellettini, G., Paolini, M., An isotropic motion by mean curvature in the context of Finsler geometry (1996) Hokkaido Math. J., 25, pp. 537-566
[4]  
Bellettini, G., Paolini, M., Verdi, C., Convex approximations of functionals with curvature (1991) Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2, pp. 297-306
[5]  
Bellettini, G., Paolini, M., Verdi, C., Numerical minimization of functionals with curvature by convex approximations (1992) Pitman Res. Notes Math. Ser., 267, pp. 124-138. , Bandle, C. et al. (eds.): Progress in partial differential equations: Calculus of variations, applications. Harlow: Longman
[6]  
Brenner, S.C., Scott, L.R., (1994) The Mathematical Theory of Finite Element Methods, , New York: Springer
[7]  
Bänsch, L., Local mesh refinement in 2 and 3 dimensions (1991) Impact Comput. Sci. Engrg., 3, pp. 181-191
[8]  
Bänsch, L., Adaptive finite-element techniques for Navier-Stokes equations and other transient problems. Adaptive finite and boundary element methods (1993) Southampton: Comput. Mech., pp. 47-76
[9]  
Fierro, F., Goglione, R., Paolini, M., Finite element minimization of curvature functionals with anisotropy (1994) Calcolo, 31, pp. 191-210
[10]  
Fierro, F., Paolini, M., Numerical evidence of fattening for the mean curvature flow (1996) Math. Models Methods Appl. Sci., 6, pp. 793-813