Gradient estimates and Harnack inequalities of a nonlinear parabolic equation for the V-Laplacian

被引:0
作者
Qun Chen
Hongbing Qiu
机构
[1] Wuhan University,School of Mathematics and Statistics
[2] Max Planck Institute for Mathematics in the Sciences,undefined
来源
Annals of Global Analysis and Geometry | 2016年 / 50卷
关键词
Gradient estimate; Nonlinear parabolic equation; Positive solution; Harnack inequality; 35B45; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider gradient estimates for the positive solutions to the following nonlinear parabolic equation: ut=ΔVu+aulogu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t=\Delta _V u + au \log u \end{aligned}$$\end{document}on M×[0,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M \times [0, T]$$\end{document}, where a is a real constant. We obtain the Li-Yau type bounds of the above equation, which cover the estimates in Davies (Heat kernels and spectral theory 1989), Huang et al. (Ann Glob Anal Geom 43:209–232, 2013), Li and Xu (Adv Math 226:4456–4491, 2011) and Qian (J Math Anal Appl 409:556–566, 2014). Besides, as a corollary, we give a gradient estimate for the corresponding elliptic case: ΔVu+aulogu=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta _V u + au \log u = 0, \end{aligned}$$\end{document}which improves the estimates in Chen and Chen (Ann Glob Anal Geom 35:397–404, 2009) and Yang ( Proc AMS 136(11):4095–4102, 2008).
引用
收藏
页码:47 / 64
页数:17
相关论文
共 26 条
[1]  
Chen L(2009)Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds Ann. Glob. Anal. Geom. 35 397-404
[2]  
Chen W(2012)Existence and Liouville theorems for V-harmonic maps from complete manifolds Ann. Glob. Anal. Geom. 42 565-584
[3]  
Chen Q(2014)A maximum principle for generalizations of harmonic maps in Hermitian, affine, Weyl and Finsler geometry J. Geom. Anal. 1 113-125
[4]  
Jost J(1993)A matrix Harnack estimate for the heat equation Commun. Anal. Geom. 43 209-232
[5]  
Qiu HB(2013)Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds Ann. Glob. Anal. Geom. 100 233-256
[6]  
Chen Q(1991)Gradient estimate and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds J. Funct. Anal. 113 1-32
[7]  
Jost J(2015)Li–Yau–Hamilton estimates and Bakry–Emery Ricci curvature Nonlinear Anal. 226 4456-4491
[8]  
Wang G(2011)Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation Adv. Math. 156 153-201
[9]  
Hamilton R(1986)On the parabolic kernel of the Schrödinger operator Acta Math. 241 374-382
[10]  
Huang G(2006)Gradient estimates for a simple elliptic equations on complete non-compact Riemannian manifolds J. Funct. Anal. 409 556-566