Hypoxic Preconditioning Protects against Ischemic Brain Injury

被引:115
作者
Sharp F.R. [1 ,2 ,3 ,4 ]
Ran R. [1 ,2 ,3 ,4 ]
Lu A. [1 ,2 ,3 ,4 ]
Tang Y. [1 ,2 ,3 ,4 ]
Strauss K.I. [3 ]
Glass T. [2 ]
Ardizzone T. [1 ,2 ,3 ,4 ]
Bernaudin M. [5 ]
机构
[1] Neuroscience Program, University of Cincinnati, Cincinnati
[2] UMR 6551 Centre National de la Recherche Scientifique, Université de Caen, IFR 47, Caen
来源
NeuroRX | 2004年 / 1卷 / 1期
基金
美国国家卫生研究院;
关键词
EPO; erythropoietin; HIF; Hypoxia; hypoxia-inducible factor; ischemia; oxygen; preconditioning; stress proteins; stroke; VEGF;
D O I
10.1602/neurorx.1.1.26
中图分类号
学科分类号
摘要
Animals exposed to brief periods of moderate hypoxia (8% to 10% oxygen for 3 hours) are protected against cerebral and cardiac ischemia between 1 and 2 days later. This hypoxia preconditioning requires new RNA and protein synthesis. The mechanism of this hypoxia-induced tolerance correlates with the induction of the hypoxia-inducible factor (HIF), a transcription factor heterodimeric complex composed of inducible HIF-1α and constitutive HIF-1β proteins that bind to the hypoxia response elements in a number of HIF target genes. Our recent studies show that HIF-1α correlates with hypoxia induced tolerance in neonatal rat brain. HIF target genes, also induced following hypoxia-induced tolerance, include vascular endothelial growth factor, erythropoietin, glucose transporters, glycolytic enzymes, and many other genes. Some or all of these genes may contribute to hypoxia-induced protection against ischemia. HIF induction of the glycolytic enzymes accounts in part for the Pasteur effect in brain and other tissues. Hypoxia-induced tolerance is not likely to be equivalent to treatment with a single HIF target gene protein since other transcription factors including Egr-1 (NGFI-A) have been implicated in hypoxia regulation of gene expression. Understanding the mechanisms and genes involved in hypoxic tolerance may provide new therapeutic targets to treat ischemic injury and enhance recovery. © 2004 The American Society for Experimental NeuroTherapeutics, Inc.
引用
收藏
页码:26 / 35
页数:9
相关论文
共 164 条
  • [1] Hawaleshka A., Jacobsohn E., Ischaemic preconditioning: mechanisms and potential clinical applications, Can J Anaesth, 45, pp. 670-682, (1998)
  • [2] Zhu Y., Ohlemiller K., McMahan B., Gidday J., Mouse models of retinal ischemic tolerance, Invest Ophthalmol Vis Sci, 43, pp. 1903-1911, (2002)
  • [3] Zimmermann C., Ginis I., Furuya K., Klimanis D., Ruetzler C., Spatz M., Hallenbeck J., Lipopolysaccharide-induced ischemic tolerance is associated with increased levels of ceramide in brain and in plasma, Brain Res, 895, pp. 59-65, (2001)
  • [4] Barone F., White R., Spera P., Ellison J., Currie R., Wang X., Feuerstein G., Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression, Stroke, 29, pp. 1937-1950, (1998)
  • [5] Blondeau N., Widmann C., Lazdunski M., Heurteaux C., Activation of the nuclear factor-κB is a key event in brain tolerance, J Neurosci, 21, pp. 4668-4677, (2001)
  • [6] Bond A., Lodge D., Hicks C., Ward M., O'Neill M., NMDA receptor antagonism, but not AMPA receptor antagonism attenuates induced ischaemic tolerance in the gerbil hippocampus, Eur J Pharmacol, 380, pp. 91-99, (1999)
  • [7] Chen J., Graham S., Zhu R., Simon R., Stress proteins and tolerance to focal cerebral ischemia, J Cereb Blood Flow Metab, 16, pp. 566-577, (1996)
  • [8] Chen J., Simon R., Ischemic tolerance in the brain, Neurology, 48, pp. 306-311, (1997)
  • [9] Currie R., Ellison J., White R., Feuerstein G., Wang X., Barone F., Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27, Brain Res, 863, pp. 169-181, (2000)
  • [10] Gage A., Stanton P., Hypoxia triggers neuroprotective alterations in hippocampal gene expression via a heme-containing sensor, Brain Res, 719, pp. 172-178, (1996)