Models of the Small World

被引:1
作者
M. E. J. Newman
机构
[1] Santa Fe Institute,
来源
Journal of Statistical Physics | 2000年 / 101卷
关键词
small world; networks; disordered systems; graph theory; social networks;
D O I
暂无
中图分类号
学科分类号
摘要
It is believed that almost any pair of people in the world can be connected to one another by a short chain of intermediate acquaintances, of typical length about six. This phenomenon, colloquially referred to as the “six degrees of separation,” has been the subject of considerable recent interest within the physics community. This paper provides a short review of the topic.
引用
收藏
页码:819 / 841
页数:22
相关论文
共 78 条
[11]  
May R. M.(2000)First-order transition in small-world networks Europhys. Lett. 50 574-297
[12]  
Bak P.(2000)Exactly solvable small-world network Europhys. Lett. 50 1-262
[13]  
Sneppen K.(1959)On random graphs Publicationes Mathematicae 6 290-2513
[14]  
Barabási A.-L.(1999)On power-law relationships of the internet topology Comp. Comm. Rev. 29 251-64
[15]  
Albert R.(1982)Scaling for first-order phase transitions in thermodynamic and finite systems Phys. Rev. B 26 2507-867
[16]  
Barabási A.-L.(1998)Six degrees of Lois Weisberg The New Yorker 74 52-360
[17]  
Albert R.(1999)The effects of local spatial structure on epidemiological invasions Proc. Roy. Soc. B 266 859-118
[18]  
Jeong H.(1999)Mean-field-type equations for spread of epidemics: The “small-world” model Physica A 274 355-195
[19]  
Barabási A.-L.(2000)Navigation in a small world Nature 406 845-4271
[20]  
Albert R.(1970)Acquaintance linking between white and negro populations: Application of the small world problem J. Pers. Soc. Psy. 15 101-2761