Models of the Small World

被引:1
作者
M. E. J. Newman
机构
[1] Santa Fe Institute,
来源
Journal of Statistical Physics | 2000年 / 101卷
关键词
small world; networks; disordered systems; graph theory; social networks;
D O I
暂无
中图分类号
学科分类号
摘要
It is believed that almost any pair of people in the world can be connected to one another by a short chain of intermediate acquaintances, of typical length about six. This phenomenon, colloquially referred to as the “six degrees of separation,” has been the subject of considerable recent interest within the physics community. This paper provides a short review of the topic.
引用
收藏
页码:819 / 841
页数:22
相关论文
共 78 条
  • [1] Adamic L. A.(2000)Power-law distribution of the world wide web Science 287 2115a-131
  • [2] Huberman B. A.(1999)Diameter of the world-wide web Nature 401 130-11152
  • [3] Albert R.(2000)Classes of behavior of small-world networks Proc. Natl. Acad. Sci. 97 11149-675
  • [4] Jeong H.(1995)Susceptible-infectious-recovered epidemic models with dynamic partnerships J. Math. Biol. 33 661-4086
  • [5] Barabási A.-L.(1993)Punctuated equilibrium and criticality in a simple model of evolution Phys. Rev. Lett. 71 4083-512
  • [6] Amaral L. A. N.(1999)Emergence of scaling in random networks Science 286 509-187
  • [7] Scala A.(1999)Mean-field theory for scale-free random networks Physica A 272 173-560
  • [8] Barthélémy M.(2000)Response to “Power-law distribution of the world wide web,” Science 287 2115a-3183
  • [9] Stanley H. E.(2000)On the properties of small-world network models Europ. Phys. J. B 13 547-578
  • [10] Anderson R. M.(1999)Small-world networks: Evidence for a crossover picture Phys. Rev. Lett. 82 3180-7