A family of Hermitian dual-containing constacyclic codes and related quantum codes

被引:0
作者
Xubo Zhao
Xiaoping Li
Qiang Wang
Tongjiang Yan
机构
[1] China University of Petroleum (East China),The College of Science
[2] Putian University,Key Laboratory of Applied Mathematics
[3] Shandong Provincial Key Laboratory of Computer Networks,School of Mathematics and Statistics
[4] Carleton University,undefined
来源
Quantum Information Processing | 2021年 / 20卷
关键词
Constacyclic codes; Cyclotomic cosets; Hermitian construction; Quantum codes; 94B05; 94B15; 94B50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a family of constacyclic BCH codes over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^2}$$\end{document} of length n=q2m-1q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=\frac{q^{2m}-1}{q+1}$$\end{document}, where q is a prime power, and m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document} an even integer. The maximum designed distance of narrow-sense Hermitian dual-containing constacyclic BCH codes over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^2}$$\end{document} of length n is determined. Furthermore, the exact dimensions of these constacyclic BCH codes with given designed distance are obtained. As a consequence, we are able to derive the parameters of quantum codes as a function of their designed parameters of the associated constacyclic BCH codes. This improves a recent result by Yuan et al. (Des Codes Cryptogr 85(1): 179–190, 2017) for codes with the same lengths except three trivial cases (q=2,3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2, 3, 4$$\end{document}). Moreover, some of our newly constructed quantum codes have better parameters compared with those constructed recently (Song et al. Quantum Inf Process 17(10): 1–24, 2018, Aly et al. IEEE Trans Inf Theory 53(3): 1183–1188, 2007, Li et al. Quantum Inf Process 18(5): 127, 2019, Wang et al. Quantum Inf Process 18(10): 1–40, 2019).
引用
收藏
相关论文
共 114 条
  • [81] Wang J(undefined)undefined undefined undefined undefined-undefined
  • [82] Li R(undefined)undefined undefined undefined undefined-undefined
  • [83] Liu Y(undefined)undefined undefined undefined undefined-undefined
  • [84] Guo G(undefined)undefined undefined undefined undefined-undefined
  • [85] Wang J(undefined)undefined undefined undefined undefined-undefined
  • [86] Li R(undefined)undefined undefined undefined undefined-undefined
  • [87] Liu Y(undefined)undefined undefined undefined undefined-undefined
  • [88] Guo G(undefined)undefined undefined undefined undefined-undefined
  • [89] Wang J(undefined)undefined undefined undefined undefined-undefined
  • [90] Li R(undefined)undefined undefined undefined undefined-undefined