A family of Hermitian dual-containing constacyclic codes and related quantum codes

被引:0
作者
Xubo Zhao
Xiaoping Li
Qiang Wang
Tongjiang Yan
机构
[1] China University of Petroleum (East China),The College of Science
[2] Putian University,Key Laboratory of Applied Mathematics
[3] Shandong Provincial Key Laboratory of Computer Networks,School of Mathematics and Statistics
[4] Carleton University,undefined
来源
Quantum Information Processing | 2021年 / 20卷
关键词
Constacyclic codes; Cyclotomic cosets; Hermitian construction; Quantum codes; 94B05; 94B15; 94B50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a family of constacyclic BCH codes over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^2}$$\end{document} of length n=q2m-1q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=\frac{q^{2m}-1}{q+1}$$\end{document}, where q is a prime power, and m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document} an even integer. The maximum designed distance of narrow-sense Hermitian dual-containing constacyclic BCH codes over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^2}$$\end{document} of length n is determined. Furthermore, the exact dimensions of these constacyclic BCH codes with given designed distance are obtained. As a consequence, we are able to derive the parameters of quantum codes as a function of their designed parameters of the associated constacyclic BCH codes. This improves a recent result by Yuan et al. (Des Codes Cryptogr 85(1): 179–190, 2017) for codes with the same lengths except three trivial cases (q=2,3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2, 3, 4$$\end{document}). Moreover, some of our newly constructed quantum codes have better parameters compared with those constructed recently (Song et al. Quantum Inf Process 17(10): 1–24, 2018, Aly et al. IEEE Trans Inf Theory 53(3): 1183–1188, 2007, Li et al. Quantum Inf Process 18(5): 127, 2019, Wang et al. Quantum Inf Process 18(10): 1–40, 2019).
引用
收藏
相关论文
共 114 条
  • [1] Aly SA(2007)On quantum and classical BCH codes IEEE Trans. Inform. Theory 53 1183-1188
  • [2] Klappenecker A(2001)Nonbinary quantum stabilizer codes IEEE Trans. Inform. Theory 47 3065-3072
  • [3] Sarvepalli PK(2001)The structure of 1-generator quasi-twisted codes and new linear codes Des. Codes Cryptogr. 24 313-326
  • [4] Ashikhmin A(1998)Quantum error correction via codes over GF(4) IEEE Trans. Inform. Theory 44 1369-1387
  • [5] Knill E(2015)Application of constacyclic codes to quantum MDS codes IEEE Trans. Inform. Theory 61 1474-1484
  • [6] Aydin N(1997)Efficient computations of encodings for quantum error correction Phys. Rev. A 56 76-82
  • [7] Siap I(2018)Two new classes of quantum MDS codes Finite Fields Appl. 53 85-198
  • [8] Ray-Chaudhuri DK(2000)Cyclic quantum error-correcting codes and quantum shift registers Proc. R. Soc. Lond. A 456 2689-2706
  • [9] Calderbank AR(2004)On optimal quantum codes Int. J. Quantum Inform. 2 757-775
  • [10] Rains EM(2003)Efficient quantum circuits for non-qubit quantum error-correcting codes INT J. Found. Comput. Sci. 14 757-775