Minkowski Sums of Monotone and General Simple Polygons

被引:0
|
作者
Eduard Oks
Micha Sharir
机构
[1] School of Computer Science,
[2] Tel Aviv University,undefined
[3] Tel Aviv 69978,undefined
[4] Courant Institute of Mathematical Sciences,undefined
[5] New York University,undefined
[6] New York,undefined
[7] NY 10012,undefined
来源
关键词
Structural Property; Computational Mathematic; Disjoint Union; Additional Property; Combinatorial Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
Let P be a simple polygon with m edges, which is the disjoint union of k simple polygons, all monotone in a common direction u, and let Q be another simple polygon with n edges, which is the disjoint union of ℓ simple polygons, all monotone in a common direction v. We show that the combinatorial complexity of the Minkowski sum P ⊕ Q is O(kℓmnα(min{m,n})), where α(·) is the inverse Ackermann function. Some structural properties of the case k = ℓ = 1 have been (implicitly) studied in [17]. We rederive these properties using a different proof, apply them to obtain the above complexity bound for k = ℓ = 1, obtain several additional properties of the sum for this special case, and then use them to derive the general bound.
引用
收藏
页码:223 / 240
页数:17
相关论文
共 50 条
  • [1] Minkowski sums of monotone and general simple polygons
    Oks, E
    Sharir, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 2006, 35 (02) : 223 - 240
  • [2] Computing the Minkowski sum of monotone polygons
    HernandezBarrera, A
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1997, E80D (02) : 218 - 222
  • [3] Exact Minkowski Sums of Polygons With Holes
    Baram, Alon
    Fogel, Efi
    Halperin, Dan
    Hemmer, Michael
    Morr, Sebastian
    ALGORITHMS - ESA 2015, 2015, 9294 : 71 - 82
  • [4] Exact Minkowski sums of polygons with holes
    Baram, Alon
    Fogel, Efi
    Halperin, Dan
    Hemmer, Michael
    Morr, Sebastian
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 73 : 46 - 56
  • [5] Convexly independent subsets of Minkowski sums of convex polygons
    Skomra, Mateusz
    Thomasse, Stephan
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [6] NEWTON POLYGONS FOR GENERAL HYPERKLOOSTERMAN SUMS
    SPERBER, S
    ASTERISQUE, 1984, (119-) : 267 - 330
  • [7] GEOMETRICAL REALISATIONS OF THE SIMPLE PERMUTOASSOCIAHEDRON BY MINKOWSKI SUMS
    Ivanovic, Jelena
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2020, 14 (01) : 55 - 93
  • [8] A counterexample to an algorithm for computing monotone hulls of simple polygons
    Toussaint, Godfried T.
    El Gindy, Hossam
    PATTERN RECOGNITION LETTERS, 1983, 1 (04) : 219 - 222
  • [9] SUMS OF SECTIONS, SURFACE AREA MEASURES, AND THE GENERAL MINKOWSKI PROBLEM
    Goodey, Paul
    Weil, Wolfgang
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2014, 97 (03) : 477 - 514
  • [10] A linear equation for Minkowski sums of polytopes relatively in general position
    Fukuda, Komei
    Weibel, Christophe
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (02) : 565 - 573