Carbon-nanotube electron-beam (C-beam) crystallization technique for silicon TFTs

被引:0
作者
Su Woong Lee
Jung Su Kang
Kyu Chang Park
机构
[1] Kyung Hee University,Department of Information Display and Advanced Display Research Center
来源
Journal of the Korean Physical Society | 2016年 / 68卷
关键词
Carbon nanotube; Electron beam; Crystallization; TFTs;
D O I
暂无
中图分类号
学科分类号
摘要
We introduced a carbon-nanotube (CNT) electron beam (C-beam) for thin film crystallization and thin film transistor (TFT) applications. As a source of electron emission, a CNT emitter which had been grown on a silicon wafer with a resist-assisted patterning (RAP) process was used. By using the C-beam exposure, we successfully crystallized a silicon thin film that had nano-sized crystalline grains. The distribution of crystalline grain size was about 10 ∼ 30 nm. This nanocrystalline silicon thin film definitely had three crystalline directions which are (111), (220) and (311), respectively. The silicon TFTs crystallized by using a C-beam exposure showed a field effect mobility of 20 cm2/Vs and an on/off ratio of more than 107. The C-beam exposure can modify the bonding network of amorphous silicon with its proper energy.
引用
收藏
页码:528 / 532
页数:4
相关论文
共 50 条
[31]   Extreme Ultraviolet Lighting Using Carbon Nanotube-Based Cold Cathode Electron Beam [J].
Yoo, Sung Tae ;
Park, Kyu Chang .
NANOMATERIALS, 2022, 12 (23)
[32]   Surface hardening of steels with carbon by non-vacuum electron-beam processing [J].
Bataev, I. A. ;
Golkovskii, M. G. ;
Bataev, A. A. ;
Losinskaya, A. A. ;
Dostovalov, R. A. ;
Popelyukh, A. I. ;
Drobyaz, E. A. .
SURFACE & COATINGS TECHNOLOGY, 2014, 242 :164-169
[33]   Photoluminescence in silicon/silicon oxide films produced by the Pulsed Electron Beam Ablation technique [J].
Araya, M. ;
Diaz-Droguett, D. E. ;
Ribeiro, M. ;
Albertin, K. F. ;
Avila, J. ;
Fuenzalida, V. M. ;
Espinoza, R. ;
Criado, D. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (05) :880-884
[34]   Electrical properties of electron-beam exposed silicon dioxides and their application to nano-devices [J].
Choi, BH ;
Jung, SK ;
Kim, SI ;
Hwang, SW ;
Park, JH ;
Kim, Y ;
Kim, EK ;
Min, SK .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1998, 37 (12B) :6996-6997
[35]   The interaction of C60 fullerene and carbon nanotube with Ar ion beam [J].
Zhu, YF ;
Yi, T ;
Zheng, B ;
Cao, LL .
APPLIED SURFACE SCIENCE, 1999, 137 (1-4) :83-90
[36]   Field Emission Cathodes to Form an Electron Beam Prepared from Carbon Nanotube Suspensions [J].
Laszczyk, Karolina Urszula .
MICROMACHINES, 2020, 11 (03)
[37]   Brightness of electron beam emitted from a single pentagon on a multiwall carbon nanotube tip [J].
Hata, K ;
Takakura, A ;
Ohshita, A ;
Saito, Y .
SURFACE AND INTERFACE ANALYSIS, 2004, 36 (5-6) :506-509
[38]   Sheet Electron Beam from Line-shape Carbon Nanotube Field Emitters [J].
Shin, Dong Hoon ;
Yun, Ki Nam ;
Han, Jun Soo ;
Lee, Cheol Jin ;
Jeon, Seok-Gy ;
Shin, Dongwon .
2015 28TH INTERNATIONAL VACUUM NANOELECTRONICS CONFERENCE (IVNC), 2015, :216-217
[39]   Cure and mechanical behaviors of cycloaliphatic/DGEBA epoxy blend system using electron-beam technique [J].
Lee, JR ;
Heo, GY ;
Park, SJ .
POLYMER-KOREA, 2003, 27 (03) :210-216
[40]   Optical Sensing of Electron-Beam Position With Twin Silver Nanotube Antenna Tuned to Hybrid Surface Plasmon Resonance [J].
Herasymova, Dariia O. ;
Dukhopelnykov, Sergii V. ;
Lucido, Mario ;
Nosich, Alexander I. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2021, 27 (01)