The Majorization Theorems of Single-Cone Trees and Single-Cone Unicyclic Graphs

被引:0
作者
Ke Luo
Shu-Guang Guo
机构
[1] Yancheng Teachers University,School of Mathematics and Statistics
[2] Qinghai Normal University,School of Mathematics and Statistics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2020年 / 43卷
关键词
(Signless Laplacian) Spectral radius; Degree sequence; Majorization; Single-cone tree; Single-cone unicyclic graph; 05C35; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
A single-cone tree (unicyclic graph) is the join of a complete graph K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_1$$\end{document} and a tree (unicyclic graph). Suppose π=(d1,d2,…,dn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi =(d_1, d_2, \ldots , d_n)$$\end{document} and π′=(d1′,d2′,…,dn′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{\,\prime }=(d_1^{\,\prime }, d_2^{\,\prime }, \ldots , d_n^{\,\prime })$$\end{document} are two non-increasing degree sequences. We say π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} is majorizated by π′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{\,\prime }$$\end{document}, denoted by π⊲π′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \lhd \pi ^{\,\prime }$$\end{document}, if and only if π≠π′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \ne \pi ^{\,\prime }$$\end{document}, ∑i=1ndi=∑i=1ndi′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \nolimits _{i=1}^{n} d_i=\sum \nolimits _{i=1}^{n} d_i^{\,^{\,\prime }}$$\end{document}, and ∑i=1jdi≤∑i=1jdi′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \nolimits _{i=1}^j d_i\le \sum \nolimits _{i=1}^j d_i^{\,^{\,\prime }}$$\end{document} for all j=1,2,…,n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1, 2, \ldots , n-1$$\end{document}. We use Jπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\pi }$$\end{document} to denote the class of single-cone trees (unicyclic graphs) with degree sequence π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}. Suppose that π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} and π′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{\,\prime }$$\end{document} are two different non-increasing degree sequences of single-cone trees (unicyclic graphs). Let ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} and ρ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho ^{\,\prime }$$\end{document} be the largest spectral radius of the graphs in Jπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\pi }$$\end{document} and Jπ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\pi ^{\,\prime }}$$\end{document}, respectively, μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and μ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^{\,\prime }$$\end{document} be the largest signless Laplacian spectral radius of the graphs in Jπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\pi }$$\end{document} and Jπ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\pi ^{\,\prime }}$$\end{document}, respectively. In this paper, we prove that if π⊲π′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \lhd \pi ^{\,\prime }$$\end{document}, then ρ<ρ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho <\rho ^{\,\prime }$$\end{document} and μ<μ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <\mu ^{\,\prime }$$\end{document}.
引用
收藏
页码:379 / 388
页数:9
相关论文
共 31 条
[1]  
Bıyıkoğlu T(2008)Graphs with given degree sequence and maximal spectral radius Electron. J. Combin. 15 R119-274
[2]  
Leydold J(1960)Graph with prescribed degrees of vertices (Hungarian) Mat. Lapok 11 264-197
[3]  
Erdös P(2005)Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees Discrete Math. 296 187-511
[4]  
Gallai T(2011)The signless Laplacian spectral radius of bicyclic graphs with prescribed degree sequences Discrete Math. 311 504-967
[5]  
Hong Y(2011)A further result on majorization theorem Linear Multilinear Algebra 59 957-3009
[6]  
Zhang X-D(2012)The (signless Laplacian) spectral radii of connected graphs with prescribed degree sequences Electron. J. Combin. 19 2997-378
[7]  
Huang YF(2012)Some results on the majorization theorem of connected graphs Acta Math. Sin. (Engl. Ser.) 28 371-22
[8]  
Liu BL(2014)The majorization theorem of extremal pseudographs Linear Algebra Appl. 459 13-421
[9]  
Liu YL(2015)Recent results on the majorization theory of graph spectrum and topological index theory Electron. J. Linear Algebra 30 402-557
[10]  
Jiang XY(2009)The majorization theorem of connected graphs Linear Algebra Appl. 431 553-287