共 2 条
Ideal, non-extended formulations for disjunctive constraints admitting a network representation
被引:0
|作者:
Tamás Kis
Markó Horváth
机构:
[1] ELKH Institute for Computer Science and Control,
来源:
Mathematical Programming
|
2022年
/
194卷
关键词:
Disjunctive programming;
Mixed-integer linear programming formulations;
Facets;
90C11;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper we reconsider a known technique for constructing strong MIP formulations for disjunctive constraints of the form x∈⋃i=1mPi\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x \in \bigcup _{i=1}^m P_i$$\end{document}, where the Pi\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P_i$$\end{document} are polytopes. The formulation is based on the Cayley Embedding of the union of polytopes, namely, Q:=conv(⋃i=1mPi×{ϵi})\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q := \mathrm {conv}(\bigcup _{i=1}^m P_i\times \{\epsilon ^i\})$$\end{document}, where ϵi\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\epsilon ^i$$\end{document} is the ith unit vector in Rm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}}^m$$\end{document}. Our main contribution is a full characterization of the facets of Q, provided it has a certain network representation. In the second half of the paper, we work-out a number of applications from the literature, e.g., special ordered sets of type 2, logical constraints, the cardinality indicating polytope, union of simplicies, etc., along with a more complex recent example. Furthermore, we describe a new formulation for piecewise linear functions defined on a grid triangulation of a rectangular region D⊂Rd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$D \subset {\mathbb {R}}^d$$\end{document} using a logarithmic number of auxilirary variables in the number of gridpoints in D for any fixed d. The series of applications demonstrates the richness of the class of disjunctive constraints for which our method can be applied.
引用
收藏
页码:831 / 869
页数:38
相关论文