Convergence of delay differential equations driven by fractional Brownian motion

被引:0
作者
Marco Ferrante
Carles Rovira
机构
[1] Università di Padova,Dipartimento di Matematica Pura ed App.
[2] Universitat de Barcelona,Facultat de Matemàtiques
来源
Journal of Evolution Equations | 2010年 / 10卷
关键词
60H05; 60H07; Stochastic differential delay equations; Fractional Brownian motion; Riemann–Stieltjes integral;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we prove an existence and uniqueness result of solution for stochastic differential delay equations with hereditary drift driven by a fractional Brownian motion with Hurst parameter H > 1/2. Then, we show that, when the delay goes to zero, the solutions to these equations converge, almost surely and in Lp, to the solution for the equation without delay. The stochastic integral with respect to the fractional Brownian motion is a pathwise Riemann–Stieltjes integral.
引用
收藏
页码:761 / 783
页数:22
相关论文
共 10 条
  • [1] Ferrante M.(2006)Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter Bernoulli 12 85-100
  • [2] Rovira C.(1994) >  1/2 Mathematical Research Letters 1 451-464
  • [3] Lyons T.(2008)Differential equations driven by rough signals (I): An extension of an inequality of L. C. Young Electron. J. Probab. 13 2031-2068
  • [4] Neuenkirch A.(2002)Delay equations driven by rough paths Collect. Math. 53 55-81
  • [5] Nourdin I.(1936)Differential equations driven by fractional Brownian motion Acta Math. 67 251-282
  • [6] Tindel S.(1998)An inequality of the Hölder type connected with Stieltjes integration Theory Relat. Fields 111 333-374
  • [7] Nualart D.(undefined)Integration with respect to fractal functions and stochastic calculus. I. Prob undefined undefined undefined-undefined
  • [8] Rascanu A.(undefined)undefined undefined undefined undefined-undefined
  • [9] Young L.C.(undefined)undefined undefined undefined undefined-undefined
  • [10] Zähle M.(undefined)undefined undefined undefined undefined-undefined