Degenerate Euler zeta function

被引:0
作者
T. Kim
机构
[1] Tianjin Polytechnic University,Department of Mathematics, College of Science
[2] Kwangwoon University,Department of Mathematics
来源
Russian Journal of Mathematical Physics | 2015年 / 22卷
关键词
Mathematical Physic; Analytic Continuation; Zeta Function; Interpolation Function; Euler Number;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, T. Kim considered an Euler zeta function which interpolates Euler polynomials at negative integers (see [3]). In this paper, we study the degenerate Euler zeta function which is holomorphic on the complex s-plane and is associated with degenerate Euler polynomials at negative integers.
引用
收藏
页码:469 / 472
页数:3
相关论文
共 50 条
[21]   Rational approximations to the zeta function [J].
Ball, Keith .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2225)
[22]   On the Functional Relations for the Euler-Zagier Multiple Zeta-functions [J].
Ikeda, Soichi ;
Matsuoka, Kaneaki .
TOKYO JOURNAL OF MATHEMATICS, 2018, 41 (02) :477-485
[23]   Polylogarithms and a zeta function for finite places of a function field [J].
Kochubei, AN .
Ultrametric Functional Analysis, 2005, 384 :157-167
[24]   POLY-EULER POLYNOMIALS AND ARAKAWA-KANEKO TYPE ZETA FUNCTIONS [J].
Hamahata, Yoshinori .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 51 (01) :7-22
[25]   Real zeros of Hurwitz-Lerch zeta and Hurwitz-Lerch type of Euler-Zagier double zeta functions [J].
Nakamura, Takashi .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 160 (01) :39-50
[26]   Sum formula for multiple zeta function [J].
Hirose, Minoru ;
Murahara, Hideki ;
Onozuka, Tomokazu .
RAMANUJAN JOURNAL, 2024, 65 (04) :1607-1619
[27]   Riemann surface of the Riemann zeta function [J].
Ivashkovich, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (02)
[28]   A zeta function for the BTZ black hole [J].
Williams, FL .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (12) :2205-2209
[29]   On a zeta function associated with automata and codes [J].
Lavallee, Sylvain ;
Reutenauer, Christophe .
THEORETICAL COMPUTER SCIENCE, 2007, 381 (1-3) :266-273
[30]   Spectral zeta function of symmetric fractals [J].
Teplyaev, A .
FRACTAL GEOMETRY AND STOCHASTICS III, 2004, 57 :245-262