Classical non-associative Lambek calculus

被引:18
作者
De Groote P. [1 ]
Lamarche F. [1 ]
机构
[1] Projet Calligramme, LORIA UMR no 7503 - INRIA, Campus Scientifique, 54506 Vandœuvre lès Nancy Cedex
关键词
Linear logic; Non-associative Lambek calculus; Proof-net;
D O I
10.1023/A:1020520915016
中图分类号
学科分类号
摘要
We introduce non-associative linear logic, which may be seen as the classical version of the non-associative Lambek calculus. We define its sequent calculus, its theory of proof-nets, for which we give a correctness criterion and a sequentialization theorem, and we show proof search in it is polynomial. © 2002 Kluwer Academic Publishers.
引用
收藏
页码:355 / 388
页数:33
相关论文
共 28 条
[1]  
Aarts E., Trautwein K., Non-associative Lambek categorial grammar in polynomial time, Mathematical Logic Quaterly, 41, pp. 476-484, (1995)
[2]  
Abrusci M., Phase semantics and sequent calculus for pure non-commutative classical linear logic, Journal of Symbolic Logic, 56, 4, pp. 1403-1451, (1991)
[3]  
Abrusci M., Maringelli E., A new Correctness Criterion fo Cyclic Multiplicative proof-nets, Journal of Logic, Language and Information, 7, 4, pp. 449-459, (1998)
[4]  
Abrusci M., Ruet P., Non commutative logic I: The multiplicative fragment, Annals of Pure and Applied Logic, 101, 1, pp. 29-64, (2000)
[5]  
Abrusci V.M., Non-commutative proof-nets, Advances in Linear Logic, London Mathematical Society Lecture Notes, pp. 271-296, (1995)
[6]  
Berge C., Graphs, North-Holland, (1985)
[7]  
Buszkowski W., Logical Foundations of Ajdukiewicz-Lambek Categorial Grammars, (1989)
[8]  
Buszkowski W., Generative power of non-associative Lambek Calculus, Bull. Polish Acad. Sci. Math., 34, pp. 507-516, (1986)
[9]  
De Groote Ph., A dynamic programming approach to categorial deduction, Lecture Notes in Artificial Intelligence, 1632, (1999)
[10]  
Fleury A., La Règle d'Échange: Logique Lineaire Multiplicative Tressée, (1996)