The Asymptotic Behavior and Symmetry of Positive Solutions to p-Laplacian Equations in a Half-Space

被引:0
作者
Yujuan Chen
Lei Wei
Yimin Zhang
机构
[1] Nantong University,School of Science
[2] Jiangsu Normal University,School of Mathematics and Statistics
[3] Wuhan University of Technology,Center for Mathematical Sciences
来源
Acta Mathematica Scientia | 2022年 / 42卷
关键词
-Lapacian; Hardy potential; symmetry; uniqueness; asymptotic behavior; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We study a nonlinear equation in the half-space with a Hardy potential, specifically, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - {\Delta _p}u = \lambda {{{u^{p - 1}}} \over {x_1^p}} - x_1^\theta f\left(u \right)\,\,\,\,{\rm{in}}\,\,T,$$\end{document} where Δp stands for the p-Laplacian operator defined by Δpu = div(∣Δu∣p−2Δu), p > 1, θ > −p, and T is a half-space {x1 > 0}. When λ > Θ (where Θ is the Hardy constant), we show that under suitable conditions on f and θ, the equation has a unique positive solution. Moreover, the exact behavior of the unique positive solution as x1 → 0+, and the symmetric property of the positive solution are obtained.
引用
收藏
页码:2149 / 2164
页数:15
相关论文
共 33 条
  • [1] Bandle C(2017)Boundary singularities of solutions of semilinear elliptic equations in the half-space with a Hardy potential Israel J Math 222 487-514
  • [2] Marcus M(2008)Boundary blowup type sub-solutions to semilinear elliptic equations with Hardy potential J London Math Soc 77 503-523
  • [3] Moroz V(2012)Boundary blow-up solutions for p-Laplacian elliptic equations of logistic type Proc Roy Soc Edingburg Sect A 142 691-714
  • [4] Bandle C(2003)Boundary blow-up solutions and their applications in quasilinear elliptic equations J D’Analyse Math 89 277-302
  • [5] Moroz V(2004)Symmetry for elliptic equations in a half-space without strong maximum principle Proc Roy Soc Edingburg Sect A 13 259-269
  • [6] Reichel W(2015)Boundary behavior of positive solutions to nonlinear elliptic equations with Hardy potential J London Math Soc 91 731-749
  • [7] Chen Y J(1998)Maximum and comparison principles for operators involving the J Math Anal Appl 218 49-65
  • [8] Wang M X(2007)-Laplacian J London Math Sco 76 419-437
  • [9] Du Y H(2018)Asymptotic behavior of positive solutions of some quasilinear elliptic problems Acta Math Sci 38B 391-418
  • [10] Guo Z M(2020)Multiplicity and concentration behaviour of positive solutions for Schrödinger-Kirchhoff type equations involving the Acta Math Sci 40B 1808-1830