T-duality on nilmanifolds

被引:0
作者
Viviana del Barco
Lino Grama
Leonardo Soriani
机构
[1] CONICET,Department of Mathematics
[2] Universidad Nacional de Rosario,undefined
[3] University of Campinas - UNICAMP,undefined
来源
Journal of High Energy Physics | / 2018卷
关键词
D-branes; Differential and Algebraic Geometry; Global Symmetries; String Duality;
D O I
暂无
中图分类号
学科分类号
摘要
We study generalized complex structures and T-duality (in the sense of Bouwknegt, Evslin, Hannabuss and Mathai) on Lie algebras and construct the corresponding Cavalcanti and Gualtieri map. Such a construction is called Infinitesimal T -duality. As an application we deal with the problem of finding symplectic structures on 2-step nilpotent Lie algebras. We also give a criteria for the integrability of the infinitesimal T-duality of Lie algebras to topological T-duality of the associated nilmanifolds.
引用
收藏
相关论文
共 33 条
  • [1] Bouwknegt P(2004)T duality: Topology change from H flux Commun. Math. Phys. 249 383-1154
  • [2] Evslin J(2004)T-duality for principal torus bundles JHEP 03 018-112
  • [3] Mathai V(2006)Nonassociative tori and applications to T-duality Commun. Math. Phys. 264 41-123
  • [4] Bouwknegt P(2006)THE TOPOLOGY OF T-DUALITY FOR Tn-BUNDLES Reviews in Mathematical Physics 18 1103-undefined
  • [5] Hannabuss K(2005)ON THE TOPOLOGY OF T-DUALITY Reviews in Mathematical Physics 17 77-undefined
  • [6] Mathai V(2016)Nilradicals of parabolic subalgebras admitting symplectic structures Diff. Geom. Appl. 46 1-undefined
  • [7] Bouwknegt P(2010)Weak mirror symmetry of Lie algebras J. Sympl. Geom. 8 37-undefined
  • [8] Hannabuss K(2007)Hermitian structures on cotangent bundles of four dimensional solvable Lie groups Osaka J. Math. 44 765-undefined
  • [9] Mathai V(2011)Generalized complex geometry Annals of Mathematics 174 75-undefined
  • [10] BUNKE ULRICH(1956)Principal fibre bundles with the 1-dimensional toroidal group Tohoku Math. J. 8 29-undefined