Study of nearly invariant subspaces with finite defect in Hilbert spaces

被引:0
作者
Arup Chattopadhyay
Soma Das
机构
[1] Indian Institute of Technology Guwahati,Department of Mathematics
来源
Proceedings - Mathematical Sciences | 2022年 / 132卷
关键词
Vector-valued Hardy space; nearly invariant subspaces with finite defect; multiplication operator; Beurling’s theorem; Dirichlet space; Blaschke products; 47A13; 47A15; 46E20; 47B38; 47B32; 30H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we briefly describe nearly T-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^{-1}$$\end{document} invariant subspaces with finite defect for a shift operator T having finite multiplicity acting on a separable Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} as a generalization of nearly T-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^{-1}$$\end{document} invariant subspaces introduced by Liang and Partington in Complex Anal. Oper. Theory15(1) (2021) 17 pp. In other words, we characterize nearly T-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^{-1}$$\end{document} invariant subspaces with finite defect in terms of backward shift invariant subspaces in vector-valued Hardy spaces by using Theorem 3.5 in Int. Equations Oper. Theory92 (2020) 1–15. Furthermore, we also provide a concrete representation of the nearly TB-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_B^{-1}$$\end{document} invariant subspaces with finite defect in a scale of Dirichlet-type spaces Dα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_\alpha $$\end{document} for α∈[-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [-1,1]$$\end{document} corresponding to any finite Blashcke product B, as was done recently by Liang and Partington for defect zero case (see Section 3 of Complex Anal. Oper. Theory15(1) (2021) 17 pp).
引用
收藏
相关论文
共 23 条
[1]  
Chalendar I(2010)Nearly invariant subspaces for backwards shifts on vector-valued Hardy spaces J. Operator Theory 63 403-415
[2]  
Chevrot N(2015)Weighted composition operators on the Dirichlet space: boundedness and spectral properties Math. Ann. 363 1265-1279
[3]  
Partington JR(2020)A Beurling theorem for almost-invariant subspaces of the shift operator J. Operator Theory 83 321-331
[4]  
Chalendar I(2020)Almost invariant subspaces of the shift operator on vector-valued Hardy spaces Integral Equations Oper. Theory 92 1-15
[5]  
Gallardo-Gutiérrez EA(2004)Nearly invariant subspaces related to multiplication operators in hilbert spaces of analytic functions Integral Equations Oper. Theory 50 197-210
[6]  
Partington JR(2020)On the Wandering Property in Dirichlet Spaces Integral Equations Oper. Theory 92 16-591
[7]  
Chalendar I(1986)The kernel of a Toeplitz operator Integral Equations Oper. Theory 9 588-120
[8]  
Gallardo-Gutiérrez EA(1988)Invariant subspaces of Pacific J. Math. 134 101-118
[9]  
Partington JR(1997) of an annulus Can. J. Math. 49 100-24
[10]  
Chattopadhyay A(2020)Multiplication invariant subspaces of Hardy spaces Complex Anal. Oper. Theory 14 10-265