Synthesis of nitrogen-doped carbon with three-dimensional mesostructures for CO2 capture

被引:0
|
作者
Manli Yao
Lin Wang
Xin Hu
Gengshen Hu
Mengfei Luo
Maohong Fan
机构
[1] Zhejiang Normal University,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry
[2] Zhejiang Normal University,College of Chemistry and Life Sciences
[3] University of Wyoming,Department of Chemical and Petroleum Engineering
来源
关键词
Mesoporous Carbon; Hard Template; Silica Template; Mesoporous Carbon Material; Mesoporous Carbon Nitride;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this research was to develop a new CO2 sorbent, three-dimensional nitrogen-doped mesoporous carbon (KIT-6-CN). KIT-6-CN was synthesized by nano-replication using carbon tetrachloride and ethylenediamine as precursors, and KIT-6 with cubic Ia3d symmetry as a hard template. The new CO2 sorbent has a relatively high BET surface area of 587 m2/g, a high pore volume of 0.91 cm3/g, and the mesostructures with pore diameters centered at 1.7 and 6.3 nm. The transmission electron microscopy of the KIT-6-CN shows that after removal of silica by NaOH, KIT-6-CN possesses three-dimensional mesoporous structure. CO2 adsorption–desorption isotherms indicate that this nitrogen-doped material has relatively high CO2 capture capacities of 2.11 mmol/g at 25 °C and 3.09 mmol/g at 0 °C, which are superior to those of the pure carbon material (KIT-6-C) with analogous mesostructures. Cyclic CO2 sorption–desorption tests demonstrated the stability of the sorbent. Thus, the new sorbent can potentially be a good candidate for CO2 capture.
引用
收藏
页码:1221 / 1227
页数:6
相关论文
共 50 条
  • [1] Synthesis of nitrogen-doped carbon with three-dimensional mesostructures for CO2 capture
    Yao, Manli
    Wang, Lin
    Hu, Xin
    Hu, Gengshen
    Luo, Mengfei
    Fan, Maohong
    JOURNAL OF MATERIALS SCIENCE, 2015, 50 (03) : 1221 - 1227
  • [2] Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture
    Li, Qiang
    Yang, Jianping
    Feng, Dan
    Wu, Zhangxiong
    Wu, Qingling
    Park, Sung Soo
    Ha, Chang-Sik
    Zhao, Dongyuan
    NANO RESEARCH, 2010, 3 (09) : 632 - 642
  • [3] Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture
    Qiang Li
    Jianping Yang
    Dan Feng
    Zhangxiong Wu
    Qingling Wu
    Sung Soo Park
    Chang-Sik Ha
    Dongyuan Zhao
    Nano Research, 2010, 3 : 632 - 642
  • [4] Facile synthesis of a nitrogen-doped carbon membrane for CO2 capture
    Qin, Guotong
    Zhang, Yupei
    Wei, Wei
    MATERIALS LETTERS, 2017, 209 : 75 - 77
  • [5] Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture
    Feng, Shanshan
    Li, Wei
    Shi, Quan
    Li, Yuhui
    Chen, Junchen
    Ling, Yun
    Asiri, Abdullah M.
    Zhao, Dongyuan
    CHEMICAL COMMUNICATIONS, 2014, 50 (03) : 329 - 331
  • [6] Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO2 Capture
    Hao, Guang-Ping
    Li, Wen-Cui
    Qian, Dan
    Lu, An-Hui
    ADVANCED MATERIALS, 2010, 22 (07) : 853 - +
  • [7] Facile Synthesis of Nitrogen-Doped Porous Carbon for Selective CO2 Capture
    He, Jiajun
    To, John
    Mei, Jianguo
    Bao, Zhenan
    Wilcox, Jennifer
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 2144 - 2151
  • [8] Synthesis of a nitrogen-doped porous carbon monolith and its use for CO2 capture
    Qian, Dan
    Hao, Guang-Ping
    Li, Wen-Cui
    Xinxing Tan Cailiao/New Carbon Materials, 2013, 28 (04): : 267 - 272
  • [9] Synthesis of a nitrogen-doped porous carbon monolith and its use for CO2 capture
    Qian Dan
    Hao Guang-ping
    Li Wen-cui
    NEW CARBON MATERIALS, 2013, 28 (04) : 267 - 272
  • [10] Controllable synthesis of nitrogen-doped hollow carbon nanospheres with dopamine as precursor for CO2 capture
    Xia, Kechan
    Yu, Yifeng
    Li, Yunqian
    Li, Shuhui
    Wang, Yuying
    Wang, Guoxu
    Zhang, Hongliang
    Chen, Aibing
    RSC ADVANCES, 2016, 6 (94): : 91557 - 91561