A linear operator associated with a certain variation of the Bessel function Jν(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_\nu (z)$$\end{document} and related conformal mappings

被引:0
作者
Yu-Ru Chen
Rekha Srivastava
Jin-Lin Liu
机构
[1] Yangzhou University,Department of Mathematics
[2] University of Victoria,Department of Mathematics and Statistics
关键词
The Bessel function ; and its modified form ; Differential subordination; Analytic functions; Univalent functions; Multivalent analytic functions; Hadamard product (or convolution); Convex univalent functions; Starlike functions; Radius of starlikeness; Lemniscate of Bernoulli; 30C45; 34A26;
D O I
10.1007/s11868-019-00321-2
中图分类号
学科分类号
摘要
In this paper we introduce an operator associated with a certain variation of the Bessel function Jν(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_\nu (z)$$\end{document} in the unit disk. By using this operator and the method of differential subordination we obtain some properties such as convolution and radius of starlikeness of the function class Ωp(k,c,λ;h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _p(k,c,\lambda ;h)$$\end{document}.
引用
收藏
页码:1331 / 1344
页数:13
相关论文
共 33 条
[21]   A class of ϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta $$\end{document}-bi-pseudo-starlike functions with respect to symmetric points associated with Telephone numbers [J].
G. Murugusundaramoorthy ;
N. E. Cho ;
K. Vijaya .
Afrika Matematika, 2024, 35 (1)
[22]   Certain subclasses of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-pseudo bi-univalent functions with respect to symmetric points associated with the Gegenbauer polynomial [J].
Adnan Ghazy Al Amoush ;
Gangadharan Murugusundaramoorthy .
Afrika Matematika, 2023, 34 (1)
[24]   Coefficient bounds for a subclass of univalent functions of complex order associated with Chebyshev polynomials defined by q-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q-$$\end{document} derivative operator [J].
M. K. Aouf ;
A. O. Mostafa ;
F. Y. Al-Quhali .
Afrika Matematika, 2023, 34 (3)
[25]   Approximation by quaternion (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-Bernstein polynomials and Voronovskaja type result on compact disk [J].
Haifa Bin Jebreen ;
Mohammad Mursaleen ;
Ambreen Naaz .
Advances in Difference Equations, 2018 (1)
[26]   The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} [J].
K. Cudna ;
O. S. Kwon ;
A. Lecko ;
Y. J. Sim ;
B. Śmiarowska .
Boletín de la Sociedad Matemática Mexicana, 2020, 26 (2) :361-375
[27]   An upper bound for third Hankel determinant of starlike functions connected with k-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-$$\end{document}Fibonacci numbers [J].
H. Özlem Güney ;
Sedat İlhan ;
Janusz Sokół .
Boletín de la Sociedad Matemática Mexicana, 2019, 25 (1) :117-129
[29]   New Families of Bi-univalent Functions Associated with the Bazilevič Functions and the λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}-Pseudo-Starlike Functions [J].
H. M. Srivastava ;
Abbas Kareem Wanas ;
H. Özlem Güney .
Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 (5) :1799-1804
[30]   Unconditional Basis Constructed from Parameterised Szegö Kernels in Analytic Hp(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^{p}(D)$$\end{document} [J].
Chitin Hon ;
Ieng Tak Leong ;
Tao Qian ;
Haibo Yang ;
Bin Zou .
Complex Analysis and Operator Theory, 2023, 17 (6)