共 33 条
[21]
A class of ϑ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\vartheta $$\end{document}-bi-pseudo-starlike functions with respect to symmetric points associated with Telephone numbers
[J].
Afrika Matematika,
2024, 35 (1)
[22]
Certain subclasses of λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda $$\end{document}-pseudo bi-univalent functions with respect to symmetric points associated with the Gegenbauer polynomial
[J].
Afrika Matematika,
2023, 34 (1)
[23]
Horadam polynomials for a new family of λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda $$\end{document}-pseudo bi-univalent functions associated with Sakaguchi type functions
[J].
Afrika Matematika,
2021, 32 (5-6)
:879-889
[24]
Coefficient bounds for a subclass of univalent functions of complex order associated with Chebyshev polynomials defined by q-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q-$$\end{document} derivative operator
[J].
Afrika Matematika,
2023, 34 (3)
[25]
Approximation by quaternion (p,q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(p,q)$\end{document}-Bernstein polynomials and Voronovskaja type result on compact disk
[J].
Advances in Difference Equations,
2018 (1)
[26]
The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha $$\end{document}
[J].
Boletín de la Sociedad Matemática Mexicana,
2020, 26 (2)
:361-375
[27]
An upper bound for third Hankel determinant of starlike functions connected with k-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k-$$\end{document}Fibonacci numbers
[J].
Boletín de la Sociedad Matemática Mexicana,
2019, 25 (1)
:117-129
[28]
On Hankel Determinant H2(3)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\varvec{H}}}_\mathbf{2}{} \mathbf{(3)}$$\end{document} for Univalent Functions
[J].
Results in Mathematics,
2018, 73 (3)
[29]
New Families of Bi-univalent Functions Associated with the Bazilevič Functions and the λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda$$\end{document}-Pseudo-Starlike Functions
[J].
Iranian Journal of Science and Technology, Transactions A: Science,
2021, 45 (5)
:1799-1804
[30]
Unconditional Basis Constructed from Parameterised Szegö Kernels in Analytic Hp(D)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {H}}^{p}(D)$$\end{document}
[J].
Complex Analysis and Operator Theory,
2023, 17 (6)