A linear operator associated with a certain variation of the Bessel function Jν(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_\nu (z)$$\end{document} and related conformal mappings

被引:0
作者
Yu-Ru Chen
Rekha Srivastava
Jin-Lin Liu
机构
[1] Yangzhou University,Department of Mathematics
[2] University of Victoria,Department of Mathematics and Statistics
关键词
The Bessel function ; and its modified form ; Differential subordination; Analytic functions; Univalent functions; Multivalent analytic functions; Hadamard product (or convolution); Convex univalent functions; Starlike functions; Radius of starlikeness; Lemniscate of Bernoulli; 30C45; 34A26;
D O I
10.1007/s11868-019-00321-2
中图分类号
学科分类号
摘要
In this paper we introduce an operator associated with a certain variation of the Bessel function Jν(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_\nu (z)$$\end{document} in the unit disk. By using this operator and the method of differential subordination we obtain some properties such as convolution and radius of starlikeness of the function class Ωp(k,c,λ;h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _p(k,c,\lambda ;h)$$\end{document}.
引用
收藏
页码:1331 / 1344
页数:13
相关论文
共 33 条